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ABSTRACT OF THE DISSERTATION

Energy Focusing through Distributed
Beamforming in Internet of Things :

Mechanisms and Applications

by Xiaoran Fan

Dissertation Director: Dr. Dipankar Raychaudhuri

In this thesis, we discuss the feasibility of using distributed antenna systems to
facilitate the deployment of IoT devices. Our approaches are inspired by Fresnel
zone plates focusing light. In our design, in a manner analogous to creating
a Fresnel zone plate, we discretize the zone plates into multiple independent
phase shifters. Each phase shifter is a far-field RF transmitter in our system.
Specifically, by coherently combining the phase of each RF transmitter in a 3D
distributed antenna system, the system forms an energy ball at the target location
where the energy density level is significantly higher than the energy density level
at any other locations. Our results demonstrate that this energy ball has great
potential to be leveraged to solve many fundamental problems in [oT and enable
exciting loT applications.

In the first part of this thesis, we discuss how a distributed antenna system

contributes to an IoT system’s confidentiality gains. Ensuring confidentiality
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of communication is fundamental to securing the operation of a wireless IoT
system, where eavesdropping is easily facilitated by the broadcast nature of the
wireless medium. By applying distributed beamforming among a coalition, we
show that a new approach for assuring physical layer secrecy, without requiring
any knowledge about the eavesdropper or injecting any additional cover noise,
is possible if the transmitters frequently perturb their phases around the proper
alignment phase while transmitting messages. This approach is readily applied
to amplitude-based modulation schemes, such as PAM or QAM. We present our
secrecy mechanisms, prove several important secrecy properties, and develop a
practical secret communication system design.

In the next part of this thesis, we discuss how a distributed antenna system
contributes to an IoT system’s energy efficiency gains. In order to meet the
ever-growing energy demand from the next billion IoT devices, we present a new
wireless power transfer (WPT) approach by aligning the phases of a collection of
radio frequency (RF) energy chargers at the target receiver device. Our approach
can ship energy over tens of meters and to mobile targets. More importantly,
our approach leads to a highly asymmetric energy density distribution in the
charging area: the energy density at the target receiver is much higher than the
energy density at other locations. It is a departure from existing beamforming
based WPT systems that have high energy along the energy beam path. Such
a technology can enable a large array of batteryless IoT applications and render
them much more robust and long-running. Thanks to its asymmetric energy
distribution, our approach potentially can be scaled up to ship higher level of
energy over longer distances.

We design, prototype, and evaluate the proposed distributed antenna system.
We implement the testbed that consists of 17 N210 and 4 B210 Universal Software
Radio Peripheral (USRP) nodes, yielding a 20 x 20 m? experiment area. Depend-

ing on system parameter settings, we measure that the eavesdroppers failed to
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decode 30% —60% of the bits across multiple locations while the intended receiver
has an estimated bit error ratio of 3 x 107%. Our results also show the system
can deliver over 0.6mw RF power that enables batteryless mobile sensors at any
point across the area.

In the last part of this thesis, we build a distributed beamforming system
that can continuously charge tiny IoT devices placed in hard-to-reach locations
(e.g. medical implants) with consistent high power, even when the implant moves
around inside the human body. To accomplish this, we exploit the unique energy
ball pattern of the distributed antenna array and devise a backscatter-assisted
beamforming algorithm that can concentrate RF energy on a tiny spot surround-
ing the medical implant. Meanwhile, the power levels on other body parts stay
at a low level, reducing the risk of overheating. We prototype the system on 21
software-defined radios and a printed circuit board (PCB). Extensive experiments
demonstrate that the proposed system achieves 0.37 mW average charging power
inside a 10 cm-thick pork belly, which is sufficient to wirelessly power a range
of commercial medical devices. Comparisons with the state-of-the-art powering
approaches shows that our system achieves 5.4x-18.1x power gain when the

implant is stationary, and 5.3x-7.4x power gain when the implant is in motion.
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Chapter 1

Introduction

1.1 Distributed Antenna System

Recently, wireless access point designs are undergoing a major shift from co-
located antennas to distributed antennas connected to a centralized processor
for signal processing [2] B]. The primary reason behind this shift is that the
distributed antenna systems (DAS) achieve better spatial diversity, higher cell and
network capacity, and scale better to the increasing number of end-devices [4, [5].
Today, major cellular providers like Verizon, AT&T, and Vodafone have already
planned their DAS worldwide, e.g., cloud radio access networks (C-RAN). In
wireless local area networks (WLAN), we also witness the trend of Wi-Fi access
points coupled with multiple extenders per geographical area. These spatially
distributed transmitters/receivers essentially form a distributed antenna system.

Noticing the proliferation of distributed antenna systems in both global and
local settings, in this thesis we ask an important question — is it possible to fa-
cilitate the deployment of IoT devices with distributed antenna systems? Our
discussion in this thesis gives an affirmative answer and points out the way to
achieve this: performing beamforming on distributed antenna systems, or dis-
tributed beamforming for short. Specifically, by coherently combining the phase
of each antenna in a 3D distributed antenna system, we form an energy ball at

the target location where the energy density level is significantly higher than the



6TXM§”@

| |

— EeTx
(a) (b)

Figure 1.1: Comparison of the energy density heatmap generated by (a) a lineary
antenna array and (b) a distributed antenna array with the same number of
antennas (24 in both cases). The receiver is placed at the center of the rectangular
area.

24TX

energy density level at any other locationsﬂ This energy ball differs from the
conventional energy beam generated by the co-located antenna array, as shown

in Figure (1.1

1.2 When IoT Meets DAS

The Internet of Things (IoT) envisions an ubiquitous connectivity among billions
of everyday objects. Today’s IoT devices are energy efficient, consuming orders
of magnitude lower power than the conventional sensors on computing, sensing,
and communication. Today’s IoT devices are also becoming increasingly smaller,
which makes them deployable anywhere, on any item, e.g., swallowed or injected
into human body for vital signs monitoring [6], placed on a tiny insect for habitat
monitoring [7]. While these IoT devices have proved their utilities in many ways,
they are still facing fundamental challenges such as security and energy efficiency
when deployed at scale or operated in long-term periods. On the other hand, the

unique energy pattern of DAS has been largely overlooked since the industrial

!This energy ball maps to an energy disk in 2D space.



and research focus in DAS are synchronization, communication throughput gain,
and deployment. This energy pattern in fact provides a plausible angle to solve
fundamental challenges in [oT systems. We envision at least three ways DAS can
facilitate IoT deployment:

Secure IoT communication. By examining how the transmitter signals
coherently combine at the receiver, we show that phase alignment accomplishes
highly efficient secret communication against eavesdroppers without knowing their
location, nor introducing any additional signal/noise. Also, to engage in secret
communication, a distributed phase alignment system only needs to introduce
very minor modifications to their normal transmission procedure. Once the trans-
mitters’ phases are adjusted so that they are aligned at the receiver, they may
start to communicate secretly to the receiver, by periodically dithering its phase
around the proper alignment phase during transmission. In this way, the system
naturally achieves secret communication. Firstly, the secret recipient’s SNR is
largely increased by aligning the phases at the intended recipient (and the SNR
at eavesdroppers’ locations are significantly decreased). After the phase alignment
is achieved, slight dithering of the phases has negligible impact on the alignment,
but can create high received signal strength (RSS) variation at other locations,
hindering anyone else from decoding the signal. Thirdly, it does not involve uti-
lizing interference for secrecy, which complicates system design, requires complex
interference cancellation and decoding schemes, which are unlikely to be allowed
in practical systems.

Pushing the Limit of Wireless Power Transfer for Batteryless IoT.
As people endeavor to deliver higher amount of energy over longer distances, it
15 hard to strike the balance between delivering high energy level at target location
and lowering energy density at other non-target locations because many wireless
transfer systems incur higher energy on the transmitter-receiver path than at

the target. In our study, we design and build a distributed beamforming based



WPT approach that can (1) deliver energy over tens of meters and (2) have the
maximum energy level at the target location. Such an approach can potentially
lead to safe and practical wireless charging solutions - by controlling the power
level at the target within a safe range, we can ensure that the power level at
other locations is also safe. Also, due to its distributed nature, our approach
can efficiently transfer energy even when there are human subjects or other large
obstacles in the space; while in a traditional beamforming based WPT system,
having obstacles on the beam may significantly undermine the energy transfer
efficiency.

Deliver power to tiny and battery-free IoT devices that are placed
in extreme environments. Maintaining batteries are usually not feasible as
these tiny IoT devices may be deployed in an inaccessible environment (e.g.,
volcano or swamp) or injected into the human body. It is possible to power
up in-body IoT devices using DAS. However, the major challenge is that the RF
signals experience severe attenuation as they propagate in human tissues. Blindly
amplifying the signal power is unfeasible due to the inherent health hazard. e.g.,
skin burning. The state-of-the art system, IVN [§], combines multiple signal
streams transmitted over different frequencies to boost the received power at
the target location under unknown channel conditions. However, this algorithm
inevitably overheats the other parts of human bodies as well, which may inherently
violates FCC’s regulation on RF exposure. In contrast, by leveraging the energy
ball, we can increase the energy density level at the target location (i.e., where
the in-body IoT device stays) while avoiding overheating at other parts of the
human body. However, there are new challenges in the context of distributed
beamforming for implants. The implants usually run in extremely low power
fashion, which prohibiting them undergo complex computing tasks. Also the RF
signal experiences excessive path loss in the human tissue. Realizing distributed

beamforming based on feedback can be a daunting task. Last but not least, the



implanted devices can work in a fully passive manner. It is a ’chicken or the egg’

problem. A proper plan to bootstrap is required.

1.3 Road Map

In the first part, we show, when distributed transmitters align their phases at
a common receiver, that several secrecy-supporting properties result. Further,
secrecy is possible without requiring knowledge of the eavesdropper or the use of
interference. By leveraging these properties, we present a new approach, referred
as Secret-Focus, that builds a highly efficient secret communication channel on top
of distributed phase alignment. We implemented a prototype Secret-Focus system
that used amplitude-based modulation on top of phase alignment, to achieve
secret communication between a coalition and an intended receiver. We presented
an implementation using USRPs and experimental results that shows Secret-Focus
can be built practically with a distributed set of transmitters employing phase
alignment. Our detailed measurements demonstrate that Bob can achieve a very
low BER, 3.1 x 107% when more than 160M bits are transmitted, while Eve’s
BER is between 30% — 60% across multiple measurement locations. In addition,
we also show that Eve cannot eavesdrop even at extreme locations, such as in
the close proximity of Bob, or one wavelength away from one of the transmitters
antennas.

In the next part, we present a new WPT approach that transfers wireless
energy to intended receivers by arranging a group of distributed transmitters
around the receiver and coherently combining their phases at the receiver. This
approach is a departure from existing beamforming based WPT approaches which
have high energy on the energy beam path. The key innovation of our approach
is that it can maximize the received power solely at the receiver, and have low

received power at other locations across the space. Through detailed evaluation



using 21 USRP nodes across a 20 x 20m? area, we show that the proposed approach
can maximize the power level at the target receiver, can deliver a consistent
amount of power to any point in the area, can charge a mobile receiver, and can
continuously power a low-power IoT node at any point across the area.

Lastly, we propose a multi-antenna system that can continuously charge the
medical implant at the near optimal beamforming power, even when the implant
moves around inside the human body. But there are servral challenges needed
to be tackle down. RF signal generation is quite power hungry, which becomes
especially challenging for medical implants that are deeply power constrained [9).
In practice, to minimize power consumption, the RF radio of a medical implant
typically adopts a rather low power amplification coefficient [10]. Therefore, the
resulting preamble signals are very weak, which are then made even worse by
the fast decaying radiation efficiency of an in-body antenna. The antenna’s ra-
diation efficiency decays significantly due to its miniature size, i.e., 10 — 20 dB
loss compared to the weak transmission signals [I1], 12]. Furthermore, RF sig-
nals experience exponentially more attenuation in human tissues than in air, e.g.,
40 dB loss over just a few centimeters in muscles [I3]. As a result, the received
signal is usually well below the noise floor, hence the failure to provide accurate
CSI estimation. We have to overcome the above challenges for a robust inbody

wireless power delivery system.



Chapter 2

Secret-Focus: A Practical Physical Layer Secret
Communication System by Perturbing Focused
Phases in Distributed Beamforming

2.1 Introduction

Ensuring confidentiality of communication links is among the most fundamental
objectives in developing communication systems. It is crucial for many applica-
tions to be able to distribute secure bit strings, such as higher-layer encryption
keys, to wireless entities. Providing confidentiality is often a daunting task due
to the broadcast nature of wireless links and therefore the ease of eavesdropping.

In addition to cryptographic mechanisms, many mechanisms that exploit a
communication system’s physical layer properties to protec secrecy have been
proposed. These mechanisms usually aim to make the channel to the intended
receiver much better than the channel to the eavesdropper. For example, wire-
less signal’s propagation and fading properties have been exploited to increase
capacity and enhance security in [14) [15] [16], [17]. Beamforming has been lever-
aged to increase the signal to noise ratio (SNR) at the intended receiver as well
as to minimize the SNR for the eavesdropper using zero-forcing [I8]. Artificial
noise has been targeted at the eavesdropper to jam their reception [19]. Though
these systems have demonstrated capabilities to communicate secretly, they have
several drawbacks. Firstly, most of them assume that the eavesdropper’s location
is known, and there are only a small number (often just one) eavesdropper. Sec-

ondly, the practicality and efficient distribution of the secret in these proposed



systems is questionable. Thirdly, many systems have shadow areas where the
anti-eavesdropping mechanism is less effective. Fourthly, some systems assume
the eavesdroppers possess less knowledge than the receiver. Therefore, supporting
confidentiality remains a significant challenge in wireless communication systems.

Recently, distributed communication systems that involve a distributed col-
lection of transmitters have received attention in the community. For example,
a cellular provider may employ multiple basestations that are connected by ded-
icated backhaul. At the other end, it could just be a group of transmitters who
are willing to coordinate their transmissions to a common receiver [20, 21]. In
such systems, referred as distributed beamforming [22], the transmitters can form
a coalition and achieve constructive superpositioning of signals at the intended
receiver by aligning the received signals’ phases, with the receiver sending a small
amount of feedback. In this study, we refer to this type of distributed systems
as distributed phase alignment systems and leverage such a system to facilitate
secret communication.

By examining how the transmitter signals coherently combine at the receiver,
we show that phase alignment accomplishes highly efficient secret communica-
tion against eavesdroppers without knowing their location, nor introducing any
additional signal/noise. Also, to engage in secret communication, a distributed
phase alignment system only needs to introduce very minor modifications to their
normal transmission procedure. Once the transmitters align their phases at the
receiver, they may start to communicate secretly to the receiver, by periodically
dithering its phase around the proper alignment phase during transmission. In
this way, the system naturally achieves secret communication. Firstly, the secret
recipient’s SNR is largely increased by aligning the phases at the intended recipi-
ent. Slight dithering of the phases later on has negligible impact on the alignment,

but can create high received signal strength (RSS) variation at other locations,



hindering anyone else from decoding the signal. Thirdly, it does not involve us-
ing interference for secrecy, which complicates system design, requires complex
interference cancellation and decoding, and regulations suggest is unlikely to be
allowed in practical systems. We refer to this highly efficient yet practical secret
communication mechanism as Secret-Focus.

In this thesis, we show the effectiveness of Secret-Focus through both analysis
and prototyping (using N210 USRPs). Our experimental results show that the
intended recipient has bit error ratio (BER) as low as 3 x 107% while eavesdrop-
pers have a much higher BER ranging from 31% to 38%, from measuring different
eavesdropper locations for a total of 164.79M bits. In addition to the main test
area, we have also examined extreme eavesdropper locations to further demon-
strate it has little shadow area. We show that when the eavesdropper antenna is
side by side(approx. lcm) with the receiver antenna, the resulting BER is 12.45%;
when the eavesdropper antenna is one wavelength (approx. 30cm) away from one
of the transmitter antennas, the BER is 27%.

To summarize, we make the following contributions in this work. Going be-
yond beamforming and jamming based techniques, we propose a new phase com-
bining and dithering based secret communication mechanism, prove its salient
properties, and build a prototype system to validate these properties. With-
out interfering with the underlying communication or hurting the data rate, our
mechanism can be easily combined with any amplitude-based modulation schemes
such as PAM or QAM. More importantly, our approach works without requiring
the system to know the eavesdropper’s location or injecting noise before hand,
and can disable eavesdroppers even at tricky locations such as in close proximity
to the intended receiver or in close proximity (one wavelength) to a transmitter

antenna.
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2.2 Background on Secret Communication Systems

As a starting point, we provide a background of physical layer secret communi-
cation systems. In a secret communication system, a sender (Alice) wishes to
reliably deliver a secret message S to an intended receiver (Bob) in the presence
of an eavesdropper (Eve). The secret message S is then subsequently encoded
into a signal X that is transmitted by Alice, Bob receives a signal Y while Eve
receives a signal Z. The objective in information-theoretic secrecy is to ensure
that Eve learns as little information as possible about the original secret mes-
sage S. The past decade has seen the physical layer community makes significant

contributions in providing secrecy for wireless channels.

Physical Layer Secret Communication for Wireless Channel: Several
mechanisms have been discussed for achieving secrecy communication over the
wireless channel. For example, the properties of wireless signal propagation and
fading have been exploited for improving secrecy [23]. Also, the broadcast nature
of the wireless channel allows one to introduce interference to hinder eavesdrop-

ping [24, 25, 26].

Physical Layer Secret Communication for Beamforming Systems: A
number of secret communication mechanisms have been discussed for beamform-
ing systems, such as those in [27, 28, 2]. With beamforming, Alice can leverage
the directionality of the beam pattern to gain a better spatial diversity and ensure
Bob’s SNR is significantly higher than Eve’s SNR at most locations. Moreover,
by adopting zero-forcing [18], Alice can perform beam-nulling at Eves’ location
to further decrease their SNR. Further, Eve can also be jammed by the system
intentionally sending artificial noise towards its direction [19], as illustrated in
Fig. 2.1f(a).

However, beamforming-based schemes have drawbacks and are quite different

in effect than Secret-Focus. Firstly, in order to perform beam-nulling or jamming,
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Figure 2.1: (a) shows a beamforming based secure communication system, in
which artificial noise is used to jam Eve. (b) illustrates Secret-Focus in which
distributed transmitters first align their phase at Bob and then perturb their
phases around the alignment phase to focus the secret message at Bob.

a common assumption is that Alice knows Eve’s locations. In many scenarios,
it is impossible to predict Eve’s location. Secondly, some of them may not need
to know Eve’s location [27], introducing artificial noise can be costly, which may
also impair Alice’s transmission towards Bob. Thirdly, such a design implies that
any eavesdropper in the path of the main side lobe may be empowered to decode
the signal. Consequently, linear-array style beamforming is not ideally suited for
secrecy communication. Instead, as illustrated in Fig. [2.1{b), it is desirable to
leverage a set of distributed transmitters to collectively communicate to the target
receiver. Those are what motivate the design of Secret-Focus. By adopting our
methods, we achieve highly secure communication without knowing Eve’s location

or sending any additional noise.

2.3 Perturbing Aligned Phases for Secret Communication

Secret-Focus involves a collection of transmitters that are distributed geographi-
cally, and who transmit secret bit strings to the intended recipient in a coordinated
fashion: first reaching a steady state by aligning their phases at the recipient and
then dithering their phases around the steady state phase (which we refer to as
®,14n) while communicating bit strings. Specifically, each transmitter adjusts the

phase of their communication signal and, with the help of a small amount of
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feedback from the recipient (Bob), without assuming any knowledge about Eve,
they achieve significantly improved signal quality at the recipient compared to
that witnessed by an unintended receiver (Eve).

There are many approaches for transmitters to align their phases, but the
specific details for how this alignment occurs has little bearing on how secrecy is
achieved. Later, in Section[2.4.1] we explain the phase alignment procedure we use
to prototype Secret-Focus, but here we focus on examining how phase alignment
creates Alice-Bob advantage relative to Alice-Eve, and thereby supports secrecy
for Alice-Bob.

To do this, we assume all transmitters know the secret message to transmit.
Then, motivated by [23, 29], which showed that discrete signaling can often out-
perform Gaussian signaling for secrecy, Secret-Focus starts with a basic pulse
amplitude modulation scheme in which each transmitter will transmit a suitably
phase-aligned high signal to transmit a 1 bit, and a phase-aligned low signal to
convey a 0 bit (see Fig.[2.3(a)). These will constructively add at Bob to produce
a received signal Y, while an eavesdropper Eve will witness a signal Z. With each
transmitter slightly dithering phases after alignment, each mode of Y will have
a mean corresponding to how well the phase alignment combines constructively
at Bob, and a variance from noise. Hence, signal values Y can be modeled by a
mixed (complex) Gaussian with two modes, where one mode corresponds to the
1 bit and the other corresponds to 0 bit (see Fig. [2.3(b) ), and similarly for Z.

We may calculate the secrecy rate I(X;Y) — I(X;Z), which captures the
achievable rate at which Alice-Bob could secretly communicate in the presence of
Eve, with the high/low discrete signaling. Using I(X;Y) = H(Y)—H(Y|X), and
the differential entropy H(Y') for a mixed Ga