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mmPlace: Robust Place Recognition with
Intermediate Frequency Signal of Low-cost
Single-chip Millimeter Wave Radar

Chengzhen Meng

Xiaoran Fan, and Yanyong Zhang

Abstract—Place recognition is crucial for tasks like loop-
closure detection and re-localization. Single-chip millimeter wave
radar (single-chip radar in short) emerges as a low-cost sensor
option for place recognition, with the advantage of insensitivity
to degraded visual environments. However, it encounters two
challenges. Firstly, sparse point cloud from single-chip radar
leads to poor performance when using current place recognition
methods, which assume much denser data. Secondly, its per-
formance significantly declines in scenarios involving rotational
and lateral variations, due to limited overlap in its field of view
(FOV). We propose mmPlace, a robust place recognition system
to address these challenges. Specifically, mmPlace transforms
intermediate frequency (IF) signal into range azimuth heatmap
and employs a spatial encoder to extract features. Additionally,
to improve the performance in scenarios involving rotational
and lateral variations, mmPlace employs a rotating platform and
concatenates heatmaps in a rotation cycle, effectively expanding
the system’s FOV. We evaluate mmPlace’s performance on
the milliSonic dataset, which is collected on the University of
Science and Technology of China (USTC) campus, the city
roads surrounding the campus, and an underground parking
garage. The results demonstrate that mmPlace outperforms point
cloud-based methods and achieves 87.37% recall@1 in scenarios
involving rotational and lateral variations.

Index Terms—Localization, Recognition.

I. INTRODUCTION

LACE recognition plays a vital role in various fields [1],

such as robotics, autonomous vehicles, augmented reality,
and more. The main goal of place recognition is to iden-
tify previously visited locations based on sensor data and
match them with a pre-built map database. For example,
in Simultaneous Localization and Mapping (SLAM), place
recognition plays an essential role in loop-closure detection,
which helps correct the accumulated error in the robot’s
estimated trajectory. Moreover, in long-term navigation, place
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Fig. 1. Our single-chip radar place recognition system. It finds the same
location in a pre-built map database based on the given query data.
TABLE I
COMPARISON OF DIFFERENT RADAR PLACE RECOGNITION SYSTEMS
System | Oxford [2] | nuScenes [3] | Ours w/o RP'| Ours w/ RP2
Type | mechanical | single-chip single-chip single-chip
Product | CTS350-X | ARS408x5 AWR1642 | AWR1642+RP
Cost($) 40000 520%5 299 299+90
Point 1000 250%5 200 200
FOV(°) 360 360 120 300

! w/o RP: without the rotating platform.
2 w/ RP: with the rotating platform.

recognition assists with re-localization, enabling the robot to
determine its position within the map after an extended period
or after being temporarily lost.

Camera and LiDAR are currently the dominant sensors for
place recognition [4]. However, due to they are both optical
sensors, their performance degrades severely in degraded vi-
sual environments, such as fog, rain, and snow [5]-[7]. On
the other hand, the radar exhibits insensitivity to degraded
visual environments due to its longer (than vision) wavelength
(A = 4mm). Specifically, the radar utilizes the millimeter-
wave signal with a wavelength larger than the small particles
in fog, rain, and snow, enabling easy pass through raindrops
and snowflakes [1], [5], [8].

Currently, radars used in place recognition systems [9] can
be categorized into two types: mechanical and single-chip.
As shown in Tab. I, although single-chip radar has fewer
point clouds and a smaller FOV than mechanical radar, it
offers the advantage of being much more affordable. However,
leveraging a single-chip radar for place recognition presents
two following challenges. Firstly, the point cloud data of
a single-chip radar is sparse. Consequently, it encounters
performance degradation when incorporated into current place
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Fig. 2. The mmPlace system consists of three main components: (1) heatmap generation, (2) feature extraction, and (3) heatmap concatenation. The heatmap
generation module performs range estimation and angle estimation on the IF signal to generate the range azimuth heatmap. The feature extraction module
employs a spatial encoder on the heatmap to produce the place descriptor. The heatmap concatenation module employs a rotating platform and concatenates

the heatmaps over a full rotation cycle.

recognition methods [10]-[14] that rely on the dense point
cloud. Secondly, the restricted FOV of the single-chip radar
exhibits limited overlap between the current query data and
the candidate data stored in the pre-built map database, par-
ticularly in scenarios with rotational and lateral variations.
Consequently, the performance of the single-chip radar place
recognition noticeably degrades in scenarios involving rota-
tional and lateral variations.

In this paper, we propose mmPlace, a robust place recogni-
tion system based on a low-cost single-chip radar. As shown
in Fig. 1, mmPlace identifies previously visited locations from
a pre-built map database based on the single-chip radar. To
begin with, mmPlace sets out from the IF signal, which is the
raw data of single-chip radar for generating the point cloud.
Specifically, mmPlace employs heatmap generation and fea-
ture extraction on the IF signal. Heatmap generation estimates
range and angle to create the range azimuth heatmap, while
feature extraction generates the place descriptor by applying
a spatial encoder on the heatmap. Subsequently, mmPlace
compares the similarity between the generated place descriptor
and the place descriptors in the pre-built map database to
recognize the current location. Moreover, mmPlace proposes
to employ a rotating platform and concatenates heatmaps in a
rotation cycle. This method not only effectively compensates
for the antenna gains but also significantly enhances the FOV
of the single-chip radar place recognition system, enhancing
the system’s performance in scenarios with rotational and
lateral variations.

Although there are some datasets available for the IF
signal [15], [16] of single-chip radar or for the place recog-
nition [2], [3], we are unable to find a dataset specifically
focusing on the IF signal of single-chip radar for place recog-
nition. As a result, we establish a dataset named milliSonic for
single-chip radar place recognition, incorporating data from
the USTC campus, the city roads surrounding the campus,
and an underground parking garage. Subsequently, we conduct
a performance evaluation of mmPlace on this self-collected
milliSonic dataset.

In summary, our contributions are as follows:

« We propose mmPlace, a robust place recognition system
based on a low-cost single-chip radar. This system trans-
forms the IF signal into the range azimuth heatmap and
employs a spatial encoder to extract heatmap features for
place recognition, outperforming both point cloud-based
and point cloud image-based methods.

o Our mmPlace proposes to employ a rotating platform and

concatenate heatmaps based on the relative pose in a
rotation cycle, achieving 87.37% recall@1 in scenarios
encompassing rotational variations from 0 to 40 degrees
and lateral translation variations from O to 3 meters.

o We collect a dataset, called milliSonic', for the single-
chip radar place recognition on the USTC campus, the
city roads surrounding the campus, and an underground
parking garage.

II. RELATED WORK

In this section, we review the related work on place recog-
nition, which can be classified into three categories based on
the sensors: camera, LiDAR, and radar.

A. Visual Place Recognition

Visual place recognition is the most investigated technique
in the place recognition area because of the camera’s ubiquity,
rich information, and cost-effectiveness. Initially, Cummins
et al. [17] propose a non-learning method called FAB-MAP
that uses SIFT features to construct a Bag-of-visual-words
(Bow) architecture for place recognition. However, learning-
based place recognition methods have become more prominent
with the advent of learning-based feature extraction [18], [19].
For example, Arandjelovic et al. [20] introduce NetVLAD,
a generalized VLAD layer that enhances the generalization
ability of visual place recognition. Building upon NetVLAD,
Hausler et al. [21] develop Patch-NetVLAD, which combines
the benefits of local and global descriptor techniques by
deriving patch-level features from the VLAD layer that are
highly invariant to translation and rotation changes.

B. LiDAR-based Place Recognition

Unlike cameras, LiDAR can capture the 3D geometric
structure of the surrounding environment using laser beams.
Kim et al. [10] propose ScanContext, a rotation-invariant 3D
place descriptor that directly records the 3D structure of visible
space. As an extension of ScanContext, Kim et al. [1 1] develop
ScanContext++, a generic descriptor that is robust to both
rotation and translation. With the emergence of learning-based
3D feature extraction, Vidanapathirana et al. [12] introduce
LoGG3D-Net, which employs a local consistency loss to guide
the network to learn the consistent local features.

The dataset and its related code are released here: https:/github.com/TC-
MCZ/mmPlace
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Fig. 3. Visualization of the range azimuth heatmap. The heatmap shows the
location of objects and indicates the power of the signal reflected back from
them. As an example, the bright spots in the heatmap correspond to the light
poles seen in the photo.

C. Radar-based Place Recognition

Unlike cameras and LiDAR, radar operates at much lower
frequencies (GHz), making them insensitive to degraded visual
environments such as rain, dust, fog, and direct sunlight.
Hong et al. [13] develop RadarSLAM by directly employing
the LiDAR place recognition method M2DP [22]. Barnes et
al. [14] introduce a self-supervised framework for odometry
estimation and use an intermediate feature as a global de-
scriptor for place recognition. Cautoplai et al. [6] propose
AutoPlace, which extracts spatial-temporal features from the
radar point cloud for place recognition, utilizing five single-
chip radars. These methods, which utilize the point cloud,
involve two types of input: one directly using the point cloud
and the other projecting it onto a fixed-size bird’s-eye-view
image (called point cloud image). These methods are effective
with mechanical radar such as CTS350-X, or when using five
single-chip radars like ARS408. However, their performance
significantly degrades when applied to a low-cost single-
chip radar, such as AWR1642, which is the single-chip radar
utilized in our mmPlace and is generally more budget-friendly
(as shown in Tab. I).

III. METHOD

The overview of mmPlace is illustrated in Fig. 2. The single-
chip radar provides the raw data IF signal as input to mmPlace.
The heatmap generation module performs range estimation
and angle estimation on the IF signal to generate the range az-
imuth heatmap, which is discussed in detail in Sec. I1I-A. Next,
the feature extraction module employs a spatial encoder on the
heatmap to produce the place descriptor, which is explained
in Sec. III-B. Subsequently, mmPlace compares the similarity
between the place descriptor and the descriptors in the pre-
built map database to recognize the current place. Additionally,
mmPlace deploys a rotating platform and concatenates the
heatmaps over a full rotation cycle, as described in Sec. III-C.

A. Range Azimuth Heatmap Generation

The IF signal is the raw data of the single-chip radar for
generating the radar point cloud [23]. However, it is important
to note that the IF signal lacks spatial information and is
unsuitable for subsequent feature extraction. Additionally, the

sparsity of the single-chip radar point cloud also hinders its
utility in feature extraction. Therefore, mmPlace performs
sequential range and angle estimations on the IF signal to
generate the range azimuth heatmap [24], which contains
richer information than the point cloud and encompasses
spatial details not present in the IF signal.

Range Estimation. The distance d between the object and
the single-chip radar can be obtained through the range es-

timation [25]. The formula for calculating the distance d is
given by:
S2d
fip=sr =20 o g2 l1EC, M

where frp is the frequency of the IF signal, S is the slope
of the millimeter wave chirp frequency change, 7 is the round
trip time, and c is the speed of light.

Angle Estimation. The angle of arrival (AoA) 6 between the
object and the single-chip radar can be determined through the
angle estimation [25]. The formula for calculating the AoA 6
is given by:

2r Ad  2wlsin(0) g Aw
= = 6= — 2
w X X = sin o) 2)

where w is the phase difference, [ is the distance between the
two receiving antennas, and \ is the wavelength.

Our mmPlace sequentially performs range estimation and
angle estimation on the sampled IF signal (/). The formula
for calculating the range azimuth heatmap (H) is as follows:

N¢
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where F'(-) represents the Fast Fourier Transform (FFT), Ng is
the analog-to-digital (ADC) sampling rate, N¢ is the number
of chirps and Ng is the number of antennas. Additionally, the
range azimuth heatmap (H) can be resized by cropping the Ng
dimension and interpolating the zeros in the Np dimension of
the IF signal (I).

The range azimuth heatmap encompasses important spatial
data. As illustrated in Fig. 3, each cell within the heatmap
represents the strength of the reflected signal from an object
at a particular range and angle. Much like the visual image,
the range azimuth heatmap possesses the capability to detect
objects such as light poles.

B. Spatial Encoder-Based Feature Extraction

Taking into account the similarity between the range az-
imuth heatmap and the Bird’s Eye View image, mmPlace
employs a spatial encoder to perform feature extraction from
the heatmap, resulting in the generation of the place descriptor.
The spatial encoder is shown in Fig. 4. Initially, the heatmap
consists of two dimensions: range and angle, and the convo-
lution kernel is well-suited for extracting information from
this two-dimensional space. Therefore, mmPlace uses four
layers of the convolution kernels with a (3 x 3) kernel size
and a (1 x 1) stride to extract information from the heatmap.
Subsequently, for the extraction and synthesis of relevant
information, mmPlace utilizes a max-pooling kernel after the
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Fig. 4. Overview of the spatial encoder. After obtaining the range azimuth
heatmap, the spatial encoder performs feature extraction on the heatmap to
obtain the place descriptor.

convolution kernel layer. Given the distinct range and angle
resolutions in the range azimuth heatmap, max-pooling kernels
with different sizes are applied: 4 in the range dimension and
2 in the angle dimension.

After performing feature extraction on the range azimuth
heatmap and obtaining the place descriptor, mmPlace com-
pares the similarity between the generated place descriptor
and the descriptors stored in the pre-built map database to
recognize the current place. For enhanced retrieval speed
within the map database, we utilize the Faiss [26] library.

In addition, we perform supervised training on the spatial
encoder, utilizing ground truth data from the state-of-the-art
LiDAR SLAM [27]. In this training process, we utilize the
triplet margin loss [28] to train the spatial encoder. This
ensures that locations closer in the real world are also closer
in the feature space, while locations further away in the real
world are correspondingly distant in the feature space. The
calculation of the loss function is as follows:

L= imin(dp(f(@), F) - dp(f(@), () +a), @)
J

where [(-) is the hinge loss(l(z) = maz(x,0)), dg(-) is the
Euclidean distance, p’ represents the positive samples, and n’
represents the negative samples.

C. Heatmap Concatenation within a Rotation Cycle

Accurate place recognition is a challenging task for single-
chip radar in scenarios with rotational and lateral variations.
This challenge arises from the variability of antenna gains in
different directions and the limited FOV of the single-chip
radar. In particular, as the orientation of the single-chip radar
changes, there are fluctuations in the signal strength reflected
back from an object. In addition, there is only a limited FOV
overlap of the single-chip radar between the current query data
and the candidate data stored in the pre-built map database in
scenarios with rotational and lateral variations. As a result,
the performance of the single-chip radar place recognition
experiences a noticeable degradation under such conditions,
as shown in Tab. V.

To address this challenge, as shown in Fig. 5, we propose
to employ a rotating platform to capture single-chip radar data
from varying angles and concatenate the heatmaps from a
complete rotation cycle. For instance, if the rotational velocity
is 150 degrees per second, and the frame rate of the single-
chip radar is 10 Hz, we have 12 heatmaps within a rotation

Rotating Platform

|

Fig. 5. The radar is deployed on a rotating platform. The rotating platform
rotates horizontally over 180 degrees at a speed of 150 degrees per second,

which effectively captures data from multiple angles.
I II I i
t-1 I
Angle
J L

t-n t-ntl t-1 t
L JL J
Calculate range and
angle offsets

Determine the
rotation cycle

Concatenate the heatmaps
over a rotation cycle

Fig. 6. The process of range azimuth heatmap concatenation. Our mmPlace
concatenates heatmaps across a rotation cycle, considering both range and
angle offsets. This results in a concatenated heatmap with an expanded FOV
of up to 300 degrees.

cycle. Therefore, the heatmap concatenation not only can
effectively compensate for antenna gains but also significantly
enhances the FOV of the single-chip radar place recognition
system, expanding it to 300 degrees. Thus, mmPlace also has
a larger FOV overlap in scenarios involving rotational and
lateral variations.

Next, we discuss how to concatenate the range azimuth
heatmaps within a cycle, which requires precise pixel-level
alignment. The rotating platform doesn’t consistently maintain
a constant speed because it undergoes periodic starts and
stops during the rotation. As a result, directly concatenating
heatmaps at fixed step intervals can lead to a significant
accumulation of concatenation errors. Therefore, mmPlace
concatenates the heatmaps based on the relative pose between
neighboring frames, effectively eliminating the cumulative
concatenation errors. This method takes into consideration
both the range offset (v, fse;) and the angle offset (aoffset)
for improved accuracy. The process of heatmap concatenation
is shown in Fig. 6. To begin with, we calculate the range
and angle offsets between neighboring heatmap frames by
minimizing the cosine similarity in their overlapping regions.
The formula is expressed as follows:

Tof fsetiys Qof fsetyy = ar%r:in s(o(Hi-1, He(r,a))),  (5)
where H is the range azimuth heatmap, H(r,a) means H
translates r and a pixels along the horizontal axis and the ver-
tical axis respectively, o(-) represents the overlap area of H;_;
and H;(r, a), s(-) computes the cosine similarity of the overlap
area of H;_; and Hy(r,a), and Toffsetyy and Gofrser,, are the
estimated results.
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TABLE II
STATISTICS OF MILLISONIC DATASET

Seq Frame Len(m) Rot(°) Lat(m) Area  Other
0 23201 320034 0-10 0-1 campus w/o RP!
1 20528 270696  0-10 0-1 campus w/o RP!
2 31417 425945  0-10 0-1 campus w/o RP!
3 21048 2756.76  0-10 0-1 city  w/o RP!
4 8253 809.37  0-10 0-1 parking w/o RP!
5 42351 397659  0-40 0-3 campus w/o RP!
6 5055 53997  0-40 0-3  campus w/ RP?
7 12684 129233  0-40 0-3 campus  w/ RP?
8 11911 76424  0-40 0-3 parking  w/ RP?
9 12018 42530  0-40 0-3 parking  w/ RP?

! w/o RP: without the rotating platform.
2 w/ RP: with the rotating platform.

Secondly, the angle offset (aoffset) possesses a positive
value when the rotating platform undergoes clockwise rota-
tion and a negative value during counterclockwise rotation.
Therefore, by assessing the sign of the angular offset, we can
ascertain the direction of rotation in the current frame. This
enables us to identify a complete rotation cycle, where the
angular offset’s sign remains constant throughout that cycle.
The formula is presented as follows:

aoffset[i_n] D aoffset[i_n_'_l] D---D aoffset[i] = 05 (6)

where n represents the number of heatmaps for a full rotation
cycle, and @ is used to determine whether the signs of
the operands on both sides of & are equal. If they are
equal, the result is O; if they differ, the result is 1. When
conducting chained calculations, determine whether the signs
of all operands involved in the computation are equal.
Finally, considering both the range and angle offsets, we
concatenate the heatmap for the entire rotation cycle in a
clockwise direction. The formula is presented as follows:

n i i
H = U HI(Z raffset[t]>zaoffset[t])7 (7)
=1 0 0

1=

The resulting heatmap (H "), derived from the concatenation
of multiple angles, not only compensates for antenna gains but
also extends the system’s FOV, thereby significantly enhancing
the system’s performance in scenarios involving rotational and
lateral variations.

It is worth noting that the rotating platform is quite af-
fordable at $90. As shown in Tab. I, the rotating platform is
significantly cheaper than a mechanical millimeter-wave radar
and costs less than one-third of AWR1642, the single-chip
radar used in mmPlace.

IV. EXPERIMENTS

In this section, we present the performance evaluation
results of mmPlace. Firstly, due to the absence of publicly
available place recognition datasets that encompass the single-
chip radar IF signal, we collect a dataset on the USTC campus,
the city roads surrounding the campus, and an underground
parking garage, called milliSonic, as presented Sec. IV-A.
Next, we provide the implementation details in Sec. IV-B.
Following that, we compare mmPlace’s performance with the
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Fig. 7. Data collection routes and scenarios for the four sequences in
the dataset. We collect the dataset on the USTC campus, the city roads
surrounding the campus, and an underground parking garage.

point cloud-based and point cloud image-based methods in
Sec. IV-C. Then we present the performance of mmPlace uti-
lizing heatmap concatenation in rotational and lateral variation
scenarios in Sec. IV-D.

A. Our milliSonic Dataset

The existing publicly available radar datasets are not suit-
able for our mmPlace. Indeed, Oxford [2] and nuScenes [3]
don’t include the IF signal, and RADIal [15] and RAMP-
CNN [16] are designed specifically for object detection. Con-
sequently, we collect the milliSonic dataset on the USTC
campus, the city roads surrounding the campus, and an un-
derground parking garage for the evaluation of mmPlace.

For data collection, we employ a mobile robot sensing
platform. As shown in Fig. 2, this platform is equipped with a
rotating platform, a TI AWR1642 single-chip radar sensor?,
a LUSTER FLRA camera sensor’, and a RoboSense RS-
32 LiDAR sensor*. Thus, our milliSonic dataset includes
the single-chip radar IF signal, the LiDAR point cloud, and
the camera image. The LiDAR data offers precise ground
truth position information via LiDAR SLAM [27], while the
camera data enables observation of the robot’s surroundings.
Furthermore, this dataset has the potential to facilitate future

Zhttps://www.ti.com/tool/ AWR 1642BOOST
3https://lusterinc.com/product/series1552.html
“https://www.robosense.cn/rslidar/RS-LiDAR-32
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TABLE III
PERFORMANCE OF MMPLACE AND POINT CLOUD-BASED METHODS AND POINT CLOUD IMAGE-BASED METHODS. SEQUENCE 1 TO 4 ENCOMPASS
ROTATIONAL VARIATIONS FROM O TO 10 DEGREES AND LATERAL TRANSLATION VARIATIONS FROM O TO 1 METER.

M
Input Data Method Sequence 1 Sequence 2 Sequence 3 Sequence 4 ean
Recall@1/5/10 maxFy  Recall@1/5/10 maxFy;  Recall@1/5/10 maxF;  Recall@1/5/10 maxF; Recall@l
M2DP [22] 52.60/62.77/67.14  0.714 40.16/49.03/53.59 0.596 30.39/41.78/47.38 0.471 45.40/57.68/63.74 0.677 42.13
Pointcloud LoGG3D [12]  56.59/70.14/74.80 0.772 53.36/69.55/75.38 0.723 38.71/54.89/62.29 0.568 46.49/67.16/71.85 0.681 48.78
ScanContext [10] 51.46/59.80/64.12 0.679 47.98/56.85/61.07 0.653 43.61/54.00/59.37 0.609 53.13/57.91/59.86 0.737 49.04
Pointcloud Image Kidnapped [7]  43.78/51.37/55.35 0.696 39.98/49.44/53.75 0.614 35.24/46.74/52.30 0.552 50.03/62.09/66.51  0.720 4225
¢ AutoPlace [0]  58.40/63.59/65.72 0.781 59.01/65.47/68.65 0.753 53.69/62.71/67.47 0.705 58.74/64.63/67.51 0.764 57.46
IF signal Ours 88.47/89.15/89.27 0.941 88.60/90.40/90.98 0.943 88.16/89.42/89.90 0.940 88.34/89.38/89.48 0.941 88.39
TABLE IV

COMPARISON OF DIFFERENT RANGE AZIMUTH HEATMAP SIZES. SEQUENCE 1 TO 4 ENCOMPASS ROTATIONAL VARIATIONS FROM 0 TO 10 DEGREES
AND LATERAL TRANSLATION VARIATIONS FROM 0O TO 1 METER.

Heatmap Size Sequence 1 Sequence 2 Sequence 3 Sequence 4 Latency(ms)
Recall@1/5/10 max Fy Recall@1/5/10 max Fy Recall@1/5/10 max Fy Recall@1/5/10 max Fy
32 x 512 86.63/88.40/88.88  0.932  85.84/88.95/89.85 0.924  85.19/88.15/89.00 0.922  86.56/87.26/87.44  0.932 17.56
32 x 768  88.01/88.79/89.17 0.939  87.00/89.92/90.61 0.939  87.23/89.03/89.67 0.939  86.73/88.25/89.15  0.934 19.12
32 x 1024  88.16/88.94/89.02 0.941  87.67/90.01/90.73  0.938  88.01/89.83/90.30  0.939  87.81/88.31/89.51 0.938 20.29
64 x 512  86.84/88.31/88.74  0.935 86.33/88.95/89.80 0.930  87.49/87.63/87.72  0.938  86.57/88.63/89.34  0.932 19.27
64 x 768"  88.47/89.15/89.27 0.941  88.60/90.40/90.98  0.943  88.16/89.42/89.90 0.940  88.34/89.38/89.48  0.941 20.14
64 x 1024  88.49/89.04/89.30  0.943  88.33/90.64/91.51 0.942  88.18/89.62/90.03 0.941 88.07/89.06/89.51  0.940 24.39

* denotes the range azimuth heatmap size used in mmPlace.

TABLE V
PERFORMANCE OF MMPLACE WITHOUT HEATMAP CONCATENATION
UNDER DIFFERENT ROTATIONAL AND LATERAL VARIATIONS.

Rot(%) 0-5 5-10 1020 | 20-40
Lat(m)
0.0-0.5 9377 | 8660 | 6556 39.23
0.5-1.0 84.09 | 84.05 6327 36.40
1.0-2.0 73.06 | 7056 | 60.95 3538
2.0-3.0 60.83 | 51.08 | 4467 2778

research endeavors, such as multi-sensor place recognition and
single-chip radar SLAM, among others.

As shown in Tab. II, the milliSonic dataset comprises ten
sequences, encompassing a total travel distance of 20,731
meters and comprising 188,466 frames of data. The dataset is
gathered across the USTC campus, the city roads surrounding
the campus, and an underground parking garage. Furthermore,
as demonstrated in Fig. 7, we present data collection routes
and scenarios for the four sequences in the dataset. In the
subsequent experiments, we employ sequence O for training,
while sequence 1 to 9 are utilized for testing. Notably, data
collection routes for sequence 1 and 2 exhibit a 30% overlap
with sequence 0, while routes for sequence 3 to 9 have
no overlap with sequence 0. Additionally, sequence 0 to 4
encompass rotational variations from 0 to 10 degrees and
lateral translation variations from O to 1 meter, while sequence
5 to 9 involve rotational variations from O to 40 degrees and
lateral translation variations from O to 3 meters. Sequence 0 to
5 collect without the rotating platform, whereas sequence 6 to
9 utilize the rotating platform. It’s worth noting that sequence
7 includes data collected both with the rotating platform (the
first 6700 frames) and without the rotating platform (the last
5984 frames).

B. Implementation Details

The spatial encoder of mmPlace is implemented using the
PyTorch framework and trained on an Nvidia RTX 3060 GPU.
For the network training, we use a batch size of 16 and employ
SGD with an initial learning rate of 0.01, momentum of 0.9,
and weight decay of 0.001. The learning rate is decayed by 0.5
every 5 epochs, and training continues until convergence, up
to a maximum of 50 epochs. Furthermore, following the scale
of AutoPlace [6] and KidnappedRadar [7], we consider places
in the database within a radius of 3 meters from the query
as true positives, while those outside a radius of 18 meters
are considered true negatives. Additionally, aligning with the
AutoPlace [6], we utilize 1 positive sample and 10 negative
samples for Eq. (4).

C. Evaluation in Normal Scenarios with IF Signal Data

In this subsection, we evaluate mmPlace in normal scenarios
(sequence 1 to 4) involving rotational variations from O to
10 degrees and lateral translation variations from O to 1
meter. We begin by comparing mmPlace with point cloud-
based and point cloud image-based methods. Subsequently,
we evaluate mmPlace’s performance under different range
azimuth heatmap sizes.

The existing radar place recognition methods [6], [7], [10],
[12], [22] utilizing point cloud employ two types of input, one
directly using the point cloud and the other using the point
cloud image, as discussed in Sec. II-C. To compare with these
methods that rely on point cloud or point cloud image, we
also process the IF signal to generate these two types of data.
Firstly, we convert the IF signal collected from the single-chip
radar into 2D point clouds with the method proposed in [29].
Next, we generate the pseudo-3D point clouds by adding a
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TABLE VI
COMPARISON OF DIFFERENT HEATMAP CONCATENATION METHODS IN SCENARIOS (SEQUENCE 6 TO 9) INVOLVING ROTATIONAL VARIATIONS FROM
0 TO 40 DEGREES AND LATERAL TRANSLATION VARIATIONS FROM 0 TO 3 METERS.

I N -
Method Data with 10-40 Rot(°) Data with 1-3 Lat(m) All Data
Recall@1/5/10 maxFy Recall@1/5/10 maxFq Recall@1/5/10 maxFp
Ours w/o HC! 65.13/68.31/69.05 0.823 68.46/74.51/75.61 0.839 69.18/76.27/80.81 0.840
Ours w/ FS-HC? 79.23/80.90/82.05 0.906 77.69/82.55/83.73 0.881 82.43/84.61/85.73 0.915
Ours w/ RP-HC? 83.48/86.42/89.88 0.915 84.47/86.84/88.84 0.926 87.37/89.07/90.92 0.939
! w/o HC: without the heatmap concatenation.
2 w/ FS-HC: with the fixed step-based heatmap concatenation.
3 w/ RP-HC: with the relative pose-based heatmap concatenation.
pseudo-axis z = 0. Finally, we obtain the point cloud images Angle
by projecting the 2D points onto the image panel. Occupied
pixels are assigned a value of 1, while unoccupied pixels are Range
assigned a value of 0. Moreover, considering the sparse nature (a) No Concatenation
of the point cloud from the single-chip radar, we follow the Angle

data processing approach in [30] by concatenating 5 frames
of the point cloud to generate a denser point cloud.

IF Signal vs Point Cloud: We compare mmPlace with current
point cloud-based [10], [12], [22] and point cloud image-
based [6], [7] methods in sequence 1 to 4. These sequences
encompass rotational variations from 0 to 10 degrees and
lateral translation variations from O to 1 meter. The evaluation
of these methods employs the standard metrics for place
recognition, including recall@N [20], maxFy [7].

As shown in Tab. III, our IF signal-based mmPlace out-
performs both point cloud-based and point cloud image-
based methods significantly. Specifically, mmPlace achieves
a 39.35% and 30.93% higher recall@1 than ScanContext
(the best point cloud-based method) and AutoPlace (the best
point cloud image-based method), respectively. Our mmPlace
achieves up to 88.39% recall@ 1, while ScanContext and Auto-
Place only achieve 49.04% and 57.46% recall@ 1, respectively.
While point cloud-based and point cloud image-based methods
prove effective with mechanical radars like CTS350-X or
when employing five single-chip radars such as ARS408, their
performance diminishes when applied to a low-cost single-chip
radar. The poor performance of these methods is attributed to
the sparse point cloud data of a low-cost single-chip radar,
which makes it difficult to extract valid scenario information
for place recognition. Whereas, mmPlace makes full use of
the information-rich IF signal data for place recognition, thus
outperforming other point could-based and point cloud image-
based methods significantly, as discussed in Sec. III-A and
Sec. III-B. This also indicates that point cloud-based and
point cloud image-based methods are not suitable for low-
cost single-chip radar, such as AWR1642, which is the radar
utilized in our mmPlace and is generally more budget-friendly
(as shown in Tab. I).

Different Heatmap Sizes: We evaluate the effects of different
range azimuth heatmap sizes in sequence 1 to 4. We modify
the generated heatmap size by cropping and zero-padding on
the IF signal data, as discussed in Sec. III-A. As shown in
Tab. IV, we observe that the larger heatmap sizes result in
improved performance but at the expense of increased system
latency. This trade-off between performance and efficiency

Range

(b) Fixed Step-Based Concatenation
Angle

Range

(c) Relative Pose-Based Concatenation

Fig. 8. Visualisation of different heatmap concatenation methods. Figure (a)
illustrates the heatmap without concatenation, while (b) and (c) illustrate the
heatmap concatenated with fixed step size and the heatmap concatenated based
on relative pose, respectively.

arises because the larger heatmap contains more information,
but it also demands a higher time overhead. Notably, when
enlarging the heatmap size to 64 x 1024, the improvements
in performance become marginal compared to the 64 x 768
configuration, while incurring a significantly higher computa-
tional overhead. Hence, We opt for the 64 x 768 heatmap size
in our mmPlace.

D. Evaluation for Heatmap Concatenation

In this subsection, we evaluate mmPlace in difficult sce-
narios (sequence 5 to 9) involving rotational variations from
0 to 40 degrees and lateral translation variations from O to
3 meters. First, we evaluate mmPlace’s performance without
heatmap concatenation under different rotational and lateral
variations. Afterward, we compare different heatmap concate-
nation methods in these difficult scenarios.

Different Rotational and Lateral Variations: We evaluate
the influence of different rotations and lateral translation in
sequence 5, without utilizing the heatmap concatenation. This
sequence encompasses rotational variations from 0 to 40
degrees and lateral translation variations from O to 3 meters.
As shown in Tab. V, the system performance declines as the
rotation angle and lateral distance increase. This issue mainly
arises from the limited overlap between the current query data
and the candidate data stored in the pre-built map database in
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scenarios with rotational and lateral variations, as discussed
in Sec. ITII-C. To address this issue, we propose to employ a
rotating platform and concatenate the heatmaps in a rotation
cycle to enhance the system’s FOV.

Comparison of Different Concatenation Methods: We
conduct a comparison of different range azimuth heatmap
concatenation methods, including no concatenation, fixed step-
based heatmap concatenation, and relative pose-based heatmap
concatenation in sequence 6 to 9. These sequences encompass
rotational variations from O to 40 degrees and lateral transla-
tion variations from 0O to 3 meters.

As shown in Tab. VI, our proposed relative pose-based
heatmap concatenation achieves 87.37% racall@1 in scenar-
ios involving rotational and lateral variations. Specifically, it
achieves 18.35% and 16.01% higher recall@1 than no con-
catenation in scenarios with 10 to 40 degrees of rotation and
1 to 3 meters of lateral translation, respectively. Also in these
scenarios, our mmPlace achieves up to 83.48% and 84.47%
racall@1, which outperforms fixed step-based concatenation
by 4.25% and 6.78%, respectively. This is because the relative
pose-based heatmap concatenation not only enables pixel-level
alignment of the heatmaps in a rotation cycle but also enlarges
the FOV overlapping area in rotational and lateral variation
scenarios, as discussed in Sec. III-C. Again, as shown in Fig. 8,
the heatmap concatenated based on relative pose has a larger
FOV than the initial heatmap and is more accurate than the
heatmap concatenated with fixed step size.

V. CONCLUSION

In this paper, we propose mmPlace, a robust place recogni-
tion system based on a low-cost single-chip radar. Since point
cloud-based and point cloud image-based methods perform
poorly due to the sparse point cloud of the single-chip radar,
mmPlace starts with the IF signal. Firstly, mmPlace generates
range azimuth heatmap by performing range and angle estima-
tion processing on the IF signal. Then, a spatial encoder is used
for feature extraction on the heatmap. Additionally, mmPlace
deploys a rotating platform and concatenates heatmaps in
a rotation cycle to enhance the system’s performance in
scenarios involving rotational and lateral variations. We collect
the milliSonic dataset on the USTC campus, the city roads
surrounding the campus, and an underground parking garage.
Our experiments on the milliSonic dataset demonstrate that
mmPlace surpasses both point cloud-based and point cloud
image-based methods. The heatmap concatenation enhances
the system’s performance in scenarios encompassing rotational
variations from 0 to 40 degrees and lateral translation varia-
tions from O to 3 meters.
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