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Abstract— Perceiving obstacles and avoiding collisions is
fundamental to the safe operation of a robot system, partic-
ularly when the robot must operate in highly dynamic human
environments. Proximity detection using on-robot sensors can
be used to avoid or mitigate impending collisions. However, ex-
isting proximity sensing methods are orientation and placement
dependent, resulting in blind spots even with large numbers
of sensors. In this paper, we introduce the phenomenon of
the Leaky Surface Wave (LSW), a novel sensing modality,
and present AuraSense, a proximity detection system using
the LSW. AuraSense is the first system to realize no-dead-spot
proximity sensing for robot arms. It requires only a single pair
of piezoelectric transducers, and can easily be applied to off-the-
shelf robots with minimal modifications. We further introduce
a set of signal processing techniques and a lightweight neural
network to address the unique challenges in using the LSW for
proximity sensing. Finally, we demonstrate a prototype system
consisting of a single piezoelectric element pair on a robot
manipulator, which validates our design. We conducted several
micro benchmark experiments and performed more than 2000
on-robot proximity detection trials with various potential robot
arm materials, colliding objects, approach patterns, and robot
movement patterns. AuraSense achieves 100% and 95.3% true
positive proximity detection rates when the arm approaches
static and mobile obstacles respectively, with a true negative
rate over 99%, showing the real-world viability of this system.

I. INTRODUCTION

As robots and robot manipulators work in dynamic en-
vironments, unexpected collisions with people and obstacles
must be avoided. A robot colliding with the environment can
damage itself or its surroundings, and can harm humans in
the workspace. Collision avoidance systems enable the robot
to detect approaching obstacles in proximity to the robot
before collision and take measures to avoid or mitigate im-
pact. As such, there has been extensive research on collision
avoidance systems for robotic manipulators.

Unlike collision avoidance systems for automobiles, robot
manipulators usually operate in confined spaces, where
collision avoidance depends on accurate short range sens-
ing in cluttered 3D environments. Many existing collision
avoidance methods use cameras and computer vision-based
object recognition or 3D shape reconstruction to detect and
react to obstacles. However, these approaches have several
limitations– their performance suffers when faced with ob-
stacle occlusions, poor light conditions, and transparent or
mirrored objects that are hard to detect visually. Further,
camera-based approaches are typically not accurate over very
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Fig. 1. AuraSense system configuration and overview.

short ranges (≤ 10cm), depending on camera focal length,
and any single camera has a limited field of view.

To address this need for short range detection, proximity
sensors such as ultrasonic proximity sensors [1], millimeter
wave radar [2], infrared proximity sensors [3], and short
range LiDAR [4] have been proposed specifically for robot
collision avoidance. These methods also have limitations:
LiDAR and millimeter wave radar are expensive, and all
these methods are all highly directional– Effective coverage
requires multiple sensors distributed throughout the robot,
and blind spots can be difficult to eliminate entirely without
vast numbers of sensors. This complicates robotic system
design and adds significant sensor management overhead.

In this paper, we propose a novel sensing modality, which
we term the Leaky Surface Wave (LSW), that enables no-
dead-spot short range proximity detection for robots. We
describe a proximity detection system using this principle,
AuraSense, which is lightweight, economical, can be attached
to an off-the-shelf robotic manipulator or mobile robot
body with minimal modifications, and provides proximity
detection of all objects with sufficient cross-sectional area
across the entire surface of the robot. AuraSense is to our
knowledge the first system that can perform full surface and
omnidirectional on-robot proximity detection for an entire
linkage using only a single sensor pair.

AuraSense uses one or more piezoelectric elements at-
tached to a robot arm, and transmits excitation signals from
one element through the robot arm to other elements. This
acoustic energy travels through the whole surface of the robot
arm, which, through its vibration, couples the signal into the
air. This acoustic signal decays rapidly with distance from
the robot surface, forming an “aura” that is disturbed by the
presence of a foreign object in proximity. An approaching
obstacle which enters this aura will establish a standing wave



pattern between the obstacle and the surface of the robot,
changing the acoustic impedance of the system. This change
can be measured by the source transducer or another attached
elsewhere on the arm, potentially at a point far from the
obstacle, allowing us to perform proximity detection.

To realize this concept, we address a number of technical
and implementation challenges. First, the major component
of the signal is received from the surface of the robot rather
than the leaky over-the-air signal. However, only the leaky
over-the-air signal contains information useful for proximity
detection. We employ a set of hardware enhancements and
signal processing techniques to extract this minor leaky
signal from the large surface signal. Second, the robot arm
itself introduces both mechanical and electrical noise which
is received by the attached piezoelectric element. We solve
this issue by customizing the waveform, and further digitally
filtering the noise. Last but not least, the received signal will
vary non-linearly depending on the robot pose (including
self-detection) and relative obstacle position/velocity as the
robot moves around. To resolve these issues, we use a
lightweight one-dimensional convolutional neural network
to identify whether a given received audio sequence corre-
sponds to the presence of a non-self obstacle.

We present an end-to-end proximity detection system with
a pair of low cost (< $2 ) piezoelectric elements attached
to an off-the-shelf commercial robot arm, and demonstrate
no-dead-spot proximity sensing with several practical exper-
iments. The simplicity of this design makes it easy to embed
into a robot with minimum modifications. To summarize, this
paper makes the following contributions:
• We introduce a novel sensing modality, the Leaky

Surface Wave, which turns the entire robot surface
into a tactile skin that allows no-dead-spot proximity
sensing on a robot arm. We build a real-world system,
AuraSense, to demonstrate this new sensing capability.
AuraSense is the first system to realize whole surface
collision avoidance on a robot linkage.

• We explore the physics behind this new sensing modal-
ity in the context of robotic systems. We propose several
signal processing algorithms, a hardware configuration,
and a lightweight 1D-CNN algorithm to specifically
address the unique challenges in our scenario.

• We implement an AuraSense prototype on a 7 degree-
of-freedom (DOF) manipulator with a 96 kHz sampling
rate audio chain, and conduct comprehensive evalua-
tions of its real-world performance. Our multi-scenario
experiments test performance on various approaching
objects with different dielectric and mechanical prop-
erties, a range of approaching speeds and angles, and
random robot movement patterns. AuraSense attains a
true positive rate of over 95% with a less than 1% false
positive rate for on-robot proximity detection.

II. RELATED WORK

The LSW bares some similarity to surface acoustic waves
(SAWs) [5], which also propagate waves along an object’s
surface between transmitter and receiver. However, SAWs

rely on the object itself being piezoelectric, operate at much
higher frequencies (megahertz range), don’t leak waves into
the air, and are mostly used as signal filters.

On the application side, existing systems for on-robot
collision avoidance can be categorized into three types: 1)
Computer vision-based collision detection, 2) Time-of-Flight
(ToF) sensor based, and 3) Interference and capacitive sens-
ing based. Computer vision-based solutions using monocular
cameras [6], stereo cameras [7], and depth cameras [8]
have been proposed, which seek to recognize obstacles in
the camera view. However, even with high performance
neural network models and algorithms, computer vision-
based solutions are still limited by camera viewing angle,
and lighting conditions, and may perform poorly on reflective
and transparent obstacles. Camera based solutions are also
in general not well-suited for short range (≤ 10cm) sensing,
as such short focal lengths can require specialized lenses
to avoid heavy distortion. Next, ToF methods can also be
used to help robots avoid nearby obstacles. ToF signals can
be acquired from phased radar [9], lidar [4], or ultrasound
sensors [1]. However, tens or even hundreds of ToF sensors
may be needed to provide whole surface proximity detection
without blind spots. This is impractical due to 1) the high
cost of ToF sensors such as lidar or millimeter wave radar,
and 2) large numbers of of ToF sensors emitting at the same
time will interfere with each other, which complicates system
design. Finally, other type of sensing modalities such as
infrared sensors [3] or capacitive coupling sensors [10] which
leverage signal interference patterns have been proposed for
on-robot collision avoidance. However, these sensors are
orientation-dependent, and capacitive sensing only works on
obstacles that have purposely calibrated dielectric constants,
such as water or human tissues.

AuraSense differs practically from these sensing modali-
ties as it enables whole surface sensing capability with only a
single transmitter/receiver pair. To our knowledge, AuraSense
is the first system to provide no-dead-zone proximity sensing
among published on-robot proximity sensing systems.

III. METHODS AND SYSTEM DESIGN

In this section, we first introduce the core of our novel
sensing modality. Next, we discuss how to leverage this
new sensing modality for on-robot whole surface proximity
detection, from robot instrumentation to neural network clas-
sification. We include proof-of-concept results throughout to
illustrate important aspects of the system design.

A. Leaky Surface Wave
At the core of our sensing method is an acoustic signal,

the LSW. By coupling piezoelectric elements to the surface
of an object with low acoustic loss, such as a robot arm made
of plastic or metal, and applying an excitation signal to the
piezoelectric element, acoustic waves propagate within and
along the surface of the object. As a result, the surface of
the object will vibrate and couple acoustic energy to the air,
making the entire surface an acoustic transducer. Notably,
piezoelectric elements couple with the surface instead of the
air, and could even be embedded within the object.
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Fig. 2. A schematic of the LSW
effect. Approaching objects form
an interference pattern with the
LSW, which affects the surface-
guided signal detected by the re-
ceiver far from the interference
site.
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Fig. 3. We instrument an alu-
minum pipe with two piezoelec-
tric elements and apply a contin-
uous sinusoidal excitation signal
to one the piezo elements. The
other element records the LSW
signal.
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Fig. 4. The recorded signal from the first proof-of-concept experi-
ment, showing responses to proximity and contact. (a) The whole
signal, including approach, touch and retreat. (b) Enlarged window
of when the hand approached the pipe.

A schematic illustrating how the LSW can be distorted
is shown in Figure 2. While most of the acoustic energy
from the transmitter stays on the surface, a small amount
“leaks” into the air. This leaky signal decays rapidly with
distance from the surface, resulting in an acoustic pressure
field “aura” that surrounds the object. Obstacles close to
the surface of the object will establish a standing wave
pattern between the obstacle and the object surface , which
perturbs the acoustic pressure field and results in an acoustic
impedance change across the entire surface. These changes
can be detected by a piezoelectric element elsewhere on
or within the object, acting as a receiver. As the signal
propagates through the object, obstacles close to any point
on the object’s surface will cause distortions that can be
measured at other points on or within the object, allowing
for a single transmitter/receiver pair to detect obstacles close
to any part of the coupled object.

Properties of the LSW: This surface acoustic pressure field
distortion displays a number of useful properties, which
we will demonstrate in this section. We performed several
simple experiments, using the setup shown in Figure 3. We
excite the piezo transmitter with a 20 kHz signal. In the first
experiment, a person’s hand approaches the pipe, touches
it, and then retreats. Figure 4(a) shows the signal recorded
in this experiment; touching the pipe (at 2.2-3 seconds)
introduces a major signal perturbation. In addition, if we
look closely at the signal when the hand is approaching the
pipe, shown in more detail in Figure 4(b), the approach of the
hand (at 1.5-2.2 seconds) is detected as well. The peaks and
dips reflect the standing wave pattern between the hand and
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Fig. 5. The signal recorded when the test pipe is approached from
the side opposite the receiver and transmitter. The hand’s approach
is detected without line of sight to either piezo element. (a) The
signal as a hand approaches the back side of the aluminum pipe. (b)
Hand approach signals from approaching three different locations
on the pipe.

the surface, which have a peak-to-peak distance of d = λ/2,
where λ is the wavelength of the signal in air. Importantly,
the amplitude of the distortion increases as the hand gets
closer to the pipe. This signal pattern varies depending on the
nature of the approaching obstacle and the obstacle’s position
and velocity relative to the surface. While these distortions
can be small and hard to interpret, measuring them allows the
LSW to be used for diverse sensing applications, including
proximity detection, object recognition, and tactile sensing.

Next we demonstrate how the LSW signal allows for
detection across whole surface. We performed an experi-
ment where we mounted piezo elements on one side of an
aluminum pipe, while a human hand approaches from the
opposite side. The resulting signal is shown in Figure 5(a).
The proximity signal pattern is clearly visible. Further,
in Figure 5(b) we still see a response when the pipe is
approached at three different locations on the opposite side
from the piezo elements, though the precise shape of the
signal varies with approach location.

Lastly, we designed a set of experiments to study how
the proximity signal changes at different distances to the
surface. In these experiments, we calculate the distance to
the surface of the pipe by dragging a wooden stick about
4.5 cm in diameter using a motor, which moves the rod
away from the surface of the aluminum pipe at a constant
speed, v=0.49 cm/s. We show the results in Figure 6(a). The
proximity signal is distinct only when the rod is less than 10
cm from the pipe, and decreases in amplitude as the distance
increases. In addition, the spacing between peaks is roughly
0.85 cm, which is around half the wave length (λ2 = 0.85
cm at 20 kHz). This means the signal pattern is a function of
the distance between the obstacle and the vibrating surface.
As a control, we also measured the received signal when the
piezo transmitter is detached from the surface (suspending it
on a string about 1 cm above the surface of the pipe). We
repeated the experiment with this setup, and show the results
in Figure 6(b). We observe no decreasing signal pattern,
and the signal instead appears random and uncorrelated with
distance. We also note that the amplitude of the received
signal is around 60 times smaller, as the signal no longer
travels through the pipe surface and instead is over-the-air.
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Fig. 6. Recordings showing how the LSW signal is affected by the
distance between the pipe and a wood block moving at constant
velocity away from the pipe. (a) As the rod moves further away
from the pipe, we see a decreasing amplitude pattern when the
transmitter is attached to the pipe. (b) We do not observe this pattern
when the transmitter is instead suspended 1 cm above the pipe.
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Fig. 7. The return loss and impedance of a piezo element when (a)
suspended in the air and (b) attached to the robot as described in
Section III-B. We can see that the resonant frequency of the piezo
element has changed as a result of robot mounting and that the Q-
factor is dramatically reduced, making the transducer useful over a
wide frequency range.

B. On-robot LSW

While the previous section established the useful proper-
ties of the LSW, this section describes how we use that signal
to design a proximity detection system for use with an off-
the-shelf robot arm. We implement AuraSense on a Kinova
Jaco [11] arm, the surface of which is composed of carbon
fiber, a material that is far from ideal as a vibrating surface,
but which demonstrates how the LSW can be used outside
ideal conditions. Key to implementing LSW sensing on this
robot is to ensure the piezo elements couple with the robot
surface- Piezo elements are usually designed to couple with
air. In Figure 7(a) we show how a piezo element coupled
with air resonates at 7 kHz, 45 kHz, and 83 kHz, and most
of the energy transfers into the air. 1 In order to decouple
the piezo element from the air, we used a thermoplastic
adhesive (glue) to attach the piezo element to the surface
of the robot, and sealed the piezo element with a layer of
Noico solutions 80 mil sound deadener [13], as illustrated in
Figure 8(a). After attaching the piezo element to the robot
this way, we performed the same measurement and show
the results in Figure 7(b). We observed that the resonances
that pumped acoustic energy into the air were removed, and
the impedance indicated the piezo element became almost
purely capacitive. We tested this robot instrumentation in
a manner similar to the experiments in Section III-A and

1We measured the characteristics of our piezo element with an Array
Solutions VNA UHF vector network analyzer [12].
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on a Kinova Jaco manipulator.

Fig. 8. Our proposed method for coupling the piezo transducers
with a robot. (a) A schematic of our mounting system. The piezo
element couples with the robot, and does not leak meaningful signal
to the air. (b) A proximity detection test performed with the system
mounted on a robot, similar to that in Figure 4(b). The proximity
signal can be observed with robot mounted transducers.

show the results in Figure 8(b). We observed a similar signal
from the robot sensors to that from the pipe, which shows
we can successfully use the LSW to detect proximity on a
commercial robot.

In AuraSense, the LSW is transmitted from one of the
piezo elements. It travels through the robot surface and is
received by another piezo element. The robot arm functions
as the wireless channel [14] in this system. Denoting the
transmitted signal as s(t) and the wireless channel as h. The
received signal r(t) can be represented as:

r(t) = h× s(t) + ν. (1)

Where ν is the internal and external system noise. Our high
level goal is to detect if there is an approaching object from
r(t) under the time varying channel response h and noise ν.

Noise Reduction: Having observed the LSW effect on a
robot, the next challenge to address is the noise ν from
the robot arm. The robot introduces two type of noise:
(1) Electrical noise from the power supply modulating the
motors, both when the arm moves and when it is stationary,
and (2) mechanical noise from the motors and gears when the
arm is in motion. Figure 9 shows a noise spectrum recorded
while the robot is moving and we set the pose of each joint
independently by choosing a value uniformly at random. We
observe that the majority of the mechanical noise energy
resides in a sub-15 kHz range, while there is also a significant
electrical noise spike at 30 kHz.

Once we understand the on-robot noise characteristics, we
can choose a range of useful frequencies which don’t overlap
with the noise spectrum. However, due to the acoustically
non-homogeneous nature of the robot arm [15], the LSW
behaves differently in different frequency bins. Figure 10
shows the frequency response measured by the piezo receiver
from the transmitter. From this figure, we surmise that the
18-19 kHz range is a sweet spot for both avoiding noise
and sending energy efficiently through the robot. As such, in
AuraSense design, we choose a f = 19 kHz continuous sinu-
soidal signal s(t) = sin 2πft to excite the piezo transmitter,
and apply a narrow 19 kHz bandpass filter to the received
signal for a further denoising.

Recovering the proximity signal: Now that we have se-
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Fig. 9. Noise spectrum extracted
from a recording of the robot
arm moving for 10 minutes,
with no excitation signal ap-
plied to the piezo element. Com-
mon motor noise frequencies are
less than 18 kHz, with electrical
noise at 30kHz.

Fig. 10. The on robot frequency
response from a recording of
the piezo transmitter that sweeps
from 0-48 kHz with equal inten-
sity in each frequency bin. The
18-19 kHz range both produces
good frequency responses and
avoids most robot noise.

lected a transmitter frequency and removed robot noise, we
must recover the proximity signal from the LSW. This signal
is orders of magnitude weaker than the surface guided signal,
as evidenced by Figure 4 and Figure 8(b). The large through-
surface signal hinders the detection process and makes it
difficult to use machine learning models to account for other
factors influencing the signal, such as self-proximity, as
the relevant differences are a small fraction of the overall
magnitude. To account for this, after the received signal r(t)
has been filtered by the band pass filter, we calculate its
analytic representation. Denoting x(t) as the filtered received
signal, the analytic signal xa(t) can be represented as:

xa(t) , x(t) + jy(t). (2)

Where j is an imaginary unit. y(t) is the Hilbert transform
of x(t), which is the convolution of x(t) with the Hilbert
transform kernel h(t) , 1

πt . As a result, the analytic
representation is a linear time-invariant filter process that can
be written as:

xa(t) =
1

π

∫ ∞
0

X(w)ejwtdw. (3)

Where X(w) is the Fourier transform of the signal x(t). In
our real time implementation, we apply this process every
L samples. Figure 11(a) shows the analytic representation
of the proximity signal from Figure 8(b) with L = 300
(sampling rate is 96 kHz). The proximity pattern is repre-
sented more obviously in the analytic signal. We employ a
statistical quality control algorithm, CUSUM [16], to monitor
the received signal analytic. Specifically, CUSUM detects if
there is a significant change or disturbance in a time series
sequence. As shown in Figure 11(b), the proximity pattern
is detected by the CUSUM algorithm around 1.8 second.

Channel disturbance and self detection: While the analytic
proximity signal is easier to detect with this processing, a
number of challenges for discriminating real signals from
false positives remain. The wireless channel h in Equation 1
is mainly determined by the mechanical characteristics of
the robot- for example, the pose of the robot and the internal
gear arrangement. Therefore, when the arm moves it changes
h and alters the received signal r(t) as well as its analytic
representation xa(t). Additionally, the robot arm could detect

(a)
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Fig. 11. (a) Analytic representation of the proximity signal. (b) The
CUSUM control chart for the analytic signal in (a). The proximity
pattern is detected around 1.8 second in this example.
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Fig. 12. (a) The proximity pattern from a hand approaching a
moving robot (at 1.8-2.2 seconds) is hard to see from the signal
analytic, (b) but the pattern is easily visible in the scalogram.

itself as an “obstacle” as linkages move closer to each other,
meaning not all proximity signals should be reacted to.
Figure 12(a) shows a snapshot of the signal analytic when
the arm is moving. As illustrated in the figure, there is a
strong signal variation caused by the channel disturbance and
self detection. In this recording a person’s hand approaches
at 1.8-2.2 seconds, but the proximity pattern is hard to
distinguish visually. However, the proximity information is
not lost– Figure 12(b) shows the scalogram of this signal
analytic using wavelet analysis. We see a strong channel
disturbance and a self-detection signal, but the proximity
signal is also visible at 1.8-2.2 seconds.

C. Classification

While a human can discriminate visually between ap-
proaching objects and background noise once familiar with
the data, automatic detection is non-trivial. The factors dis-
cussed above can have highly nonlinear effects on the signal,
which make discriminating signals typical of approaching
obstacles difficult. The complexity of this task motivates a
machine learning approach to the problem.

Learning proximity: To address these issues, we use a 1D
convolutional neural network to perform binary classification
on windowed analytic signals, classifying each segment as
corresponding to an approaching obstacle or to the negative
case where no obstacles are close by. Our network uses a
simple fully-convolutional architecture, consisting of 7 1D
convolutions, plus a linear layer outputting a scalar prediction
between 1 (object approaching) and 0 (no object approach-
ing). This classifier takes as input windows of 960 samples
collected at a 96 kHz sample rate, such that each window
corresponds to 0.01 seconds of audio. The samples are
normalized in 0.3 second windows (our detector window size
below) before being input to the network. Hyperparameters



and the training process are discussed in Section IV-B.

Detector: While this classifier achieves high accuracy on
0.01 second timescales, for robust detection at human
timescales aggregation across multiple 0.01 second windows
is needed. To make a final decision, we pass N sequential
0.01-second window scalar predictions into a larger window
detector, average them, and make the final determination on
whether an approaching obstacle has been detected or not
by thresholding the average. During our on-robot testing
we found the classifier’s predictions are not independent
and identically distributed among 0.01 second windows, so
the detector uses N = 30, a 0.3 second sliding window,
to compensate. We slide the window in increments of 0.1
seconds. When the detector’s threshold is exceeded, a stop
signal is sent to the robot, which freezes in place to avoid
or minimize the impact.

IV. IMPLEMENTATION

We describe the implementation details in this section.

A. Hardware Setup

For AuraSense, we deploy two CPT-2065-L100 piezo
elements [17] 20 cm apart on a Kinova Jaco Gen 2 7-
DoF manipulator. We use a SMSL M100 digital-to-analog
converter (DAC) [18] to decode the digital waveform from
the computer. We pass this converted analog signal to a
Cavalli Liquid Carbon X amplifier [19], which directly drives
the transmitting piezo element. The receiving piezo element
is connected to a Zoom F8n MultiTrack Field Recorder [20].
This field recorder is grounded on the robot’s ground to
eliminate ground loop capacitive coupling. We use a sam-
pling rate Fs of 96 kHz. Signal processing is done on
an Intel NUC7i7BNH computer [21]. Both piezo elements
are attached to the surface of the robot with thermoplastic
adhesive and covered by a sound deadening material as
described in Section III-B.

B. Neural Network Training

To train our classification network, we used the following
implementation details and hyperparameters. All neural net-
works were implemented in PyTorch 1.7.1 [22]. Our network
consists of 7 1D convolution layers with length 7 kernels and
256 hidden channels, with a stride of 2 at each layer. We
trained this network using softmax cross-entropy with the
Adam optimizer [23]. We used ReLU non-linearities, and
batch normalization [24] with a batch size of 32 samples,
with 16 positive and 16 negative samples per batch. Networks
were trained at a learning rate of 0.00001. To sample training
batches, 32 new random windows were selected from among
all possible contiguous 960-sample windows in the positive
and negative training sequences. Computing predictions for
a 0.3 second window using our implementation takes about
0.0025 seconds on a 3090 GPU in a high-end workstation.

V. EVALUATION

We present our experiments and evaluation results in
this section. We first describe a set of micro-benchmark
experiments to deepen our understanding of LSW signals,

followed by realistic on-robot experiments to demonstrate
how the LSW can be used for practical proximity detection.

A. Micro-benchmark

In this section, we study the fundamental properties of
the LSW. We use the motor controlled stick mentioned in
Section III-A to approach stationary targets instrumented
with piezo elements. The stick approaches the target surface
at a constant speed until the rod hits the surface, allowing us
to know the zero distance time point. We use the CUSUM
algorithm (introduced in Section III-B) to detect (1) if there is
a significant change in the signal analytic caused by the stick
approaching, and (2) how far away from the target surface
we can detect the approaching stick.

1) Detecting proximity vs. approach angle: In our first
experiment, we approached the midpoint between the piezo
transmitter and receiver on the robot arm from different
angles using our stick apparatus. This tests the omnidi-
rectional sensing capabilities of AuraSense. We denote 0
degrees as the orientation perpendicular to the plane of the
transmitter and receiver. We sample angles of 60, 120, 180,
240, and 300 degrees offset from that angle to test approaches
from all directions. We performed this experiment 13 times
for each angle. Figure 13 shows the results. They indicate
that AuraSense can detect the approaching stick from all
angles tested. Interestingly, the maximum detection distance
is shorter when approaching the side opposite the piezo ele-
ments. Among angles tested, the shortest maximum detection
range was 10.9 cm at 120 degrees, an oblique angle on the
opposite side of the robot from the piezo elements, compared
to a maximum detection range of 18.3 cm when approaching
perpendicular to the piezo elements on the same side.

2) Detecting proximity vs. approach location: Next, we
explore the relationship between the position of the stick and
the proximity signal. We use the same experimental setup as
the previous section, but place the stick at different locations
relative to the piezo elements. We denote location 0 as a 0
cm horizontal offset from the receiver piezo element (the rod
is pointed directly at the receiver). The piezo receiver and
transmitter are 20 cm horizontally apart. We performed the
approach experiment 13 times at each location. The results
in Figure 14 show that AuraSense can detect the approaching
rod at all approach locations tested. The maximum detection
distances are slightly shorter for starting positions closer to
the transmitter, with the shortest range being 12.9 cm at the
greatest distance from the receiver, compared to a maximum
range of 18.3 cm directly over the receiver.

3) Detecting proximity vs. dummy robot material: While
the Kinova Jaco manipulator used in AuraSense is made of
carbon fiber composite, other robot arms might be made of
different materials. To study the effect robot material has
on the LSW proximity signal, we attach the same piezo
pair to 17 different “robots” made of different materials,
which are shown in Figure 15. The materials used include
brass, aluminum pipe in different shapes, galvanized steel,
Polyvinyl chloride (PVC), and wooden pipe. Again we use
the stick apparatus to approach the dummy robot surfaces.



Fig. 13. Max detection distance
vs. approaching angle.

Fig. 14. Max detection distance
vs. approaching location.

Fig. 15. Materials we used as
“robots” .

Fig. 16. Max detection distance
vs. “robot” surfaces.

Fig. 17. Objects used in the
field study.

Fig. 18. The ROC curve for our
detector.

The rod approaches vertically toward the midpoint between
the transmitter and receiver pair. We perform the experiment
13 times for each dummy robot. Figure 16 shows the
maximum detection distances for each dummy robot. The
proximity signal can not be detected for material 4 (a floppy
thin foil), 7 (a stick), and 12 (a wooden plate). The PVC pipe
(material 2) has a notably shorter detection distance (6.5 cm).
The other materials we tested produce an LSW signal, with a
maximum detection distance among all materials of 37.3 cm
from a thin aluminum plate (material 13). In practice, most
metals and rigid plastics allow LSW sensing at a reasonable
range, as does the carbon fiber composite on the robot.

4) Speed limitations: Given a maximum detection dis-
tance D and a system response time td (from both mechani-
cal delay and system processing delay), we can calculate an
upper approach speed limit vmax for AuraSense. This speed
is the highest relative movement speed between the robot and
the obstacle that AuraSense can respond to prior to impact,
compared as vmax = D

td
. The system response time includes

everything up to the measured full stop of the robot, td, is
around 150 ms. As can be seen from the previous micro
benchmark studies, AuraSense has a maximum detection
range on the Kinova Jaco of 18.3 cm. Therefore the upper
speed limit for our testbed is 122 cm/s, which is well above
the maximum end effector speed of our robot arm (20 cm/s),
though fast-moving obstacles could exceed this limit, and
adversarial approach vectors could reduce it to 72 cm/s based
on our tests. Future optimization of the system response time
and maximum detection range could be performed to raise
the speed limit as well.

B. Field Study

To evaluate the practical effectiveness of our proposed
system, we performed several experiments testing AuraSense
on a Kinova Jaco manipulator to assess the performance
of AuraSense in a realistic setting. We tested AuraSense
on 24 objects with various dielectrics, including a human

Static Object TPR Moving Object TPR TNR
100% 95.3% 99.1%

TABLE I. Final TPR and TNR for static and mobile objects
with the CNN classifier. The robot arm is moving for both static
and mobile object trials.

hand, which are shown in Figure 17. In each trial, the
object approaches and collides with the arm- the objective of
AuraSense is to detect the object in the time window 0.5 to
0.2 seconds before impact, which allows the arm enough time
to react by stopping in place. We recorded more than 2000
real world on-robot approach trials with these objects. We
hit the stationary arm 1152 times; we programmed the arm
to hit a stationary object, and performed that experiment 120
times; we hit the moving arm with an object 1152 times. In
each case, the data was collected across two days to include
variation in background noise. Because our measured system
response time td is around 150 ms, we truncate the 0.5-0.2
second window before collision, and consider that window as
one datapoint. We also collected negative datapoints in 0.3
second windows where the arm is stationary or randomly
moves with no obstacles in proximity.

1) Static Robot, Moving Object: First, we tested the
ability of AuraSense mounted on a stationary arm to detect
approaching objects. This test case avoids many of the
challenges described in Section III-B, such as channel distur-
bance from robot motion, and self-detection. We approached
the stationary arm with all 24 objects with diverse angles,
approach locations, and approach speeds deliberately intro-
duced by a human operator. We divided the 1152 positive
datapoints in half based on the day it was collected, and
used one day for training and the other for testing. As this
experiment lacks complex non-linear noise factors, we used
an SVM with an RBF kernel for the classification task. This
SVM model obtained both a true positive rate (TPR) and a
true negative rate (TNR) of 100% on the test data.

2) Moving Robot, Static Object: For our next set of
experiments, we considered the opposite case, in which the
robot moves while the obstacle remains static. Accurate
detection in this case is more difficult than the previous
case, as robot motion introduces complex noise signals as
discussed in Section III-B. To test this case, we had the
robot move on a repeatable trajectory which intersects with a
cardboard box suspended in the air by a string. In this case,
the 0.3 second window SVM classifier performs much worse,
and only achieves an inter-day generalization accuracy of
75.8%, due to the variation in the signal introduced by robot



Book end Keyboard box Transformer Notebook PVC pipe Steel pipe Plastic box Sound absorber
TPR 93.8% 95.8% 91.7% 91.7% 97.9% 95.8% 93.8% 97.9%

Alum. box Acid battery Stick Human hand Cellphone Cardboard box Paper towels Rope bundle
TPR 97.9% 93.8% 93.8% 97.9% 93.8% 97.9% 97.9% 93.8%

Painted pipe Foil Duct Alum. pipe Alum. plate Headphones Box w/contents Ventilation duct Wooden statue
TPR 91.7% 100% 95.8% 93.8% 100% 100% 97.9% 91.7%

TABLE II. Per-object results from our large scale on-robot experiments using the CNN classifier.

noise and movement-induced self-detections.
In response, we trained a 1D CNN classifier on this data

as detailed in Section III-C. This classifier achieves a 0.01
second window classification accuracy of 96.7%. This test
shows that the CNN classifier can handle the self-detections
and channel disturbances present in real-world robotic LSW
data, even on smaller datasets (only 60 positive trials were
used for training, with 60 for testing).

3) Moving Robot, Moving Object: Finally, we evaluated
AuraSense on the most complex and realistic case, where
both static and moving objects are present. We collected a
much larger dataset of moving robot/moving object trials,
consisting of 24 trials of each of the 24 objects for two
separate days, or 1152 positive trials in all. In each trial, the
robot executes a random movement trajectory while a human
operator taps the robot with the corresponding object, held in
their hand, making an effort to sample a diversity of approach
angles, speeds, and impact locations.

We trained our CNN classifier on this data with half
the objects used for training and half for testing. We also
included the static object data from the preceding section
so that our final classifier can detect both static and moving
obstacles. Overall classifier accuracy was 83.9%, lower than
the static-only experiment due to the diversity of robot
movements and object approach directions. However, when
we apply the sliding window detector described in Section
III-C to the classifier’s predictions, we get moving and static
object detection TPR’s of 95.3% and 100% respectively, with
a combined TNR of 99.1% as shown in Table I. The receiver
operating curve (ROC) for this detector is shown in Fig-
ure 18. We selected a positive detection threshold of 0.717 by
estimating the inflection point of the combined ROC curve,
then used that threshold to compute the individual values.
We note that as the drawbacks of false positives are small
(the robot halts for a brief period), TPR’s could be increased
by selecting a lower threshold at the cost of more halts. We
also show the per-object TPR breakdown in Table II (The
training and test split was reversed to get test performance for
all objects). While there is inter-object variation, AuraSense
achieves >91% TPR for all objects. This result shows that
AuraSense is capable of performing proximity detection in
a real-world setting with high accuracy, and that sliding
window detection greatly improves system performance by
avoiding transient misclassifications.

VI. CONCLUSION

In this paper, we presented AuraSense, a full-surface
proximity detection system mounted on a robot arm segment.
AuraSense employs the LSW generated by a pair of piezo
elements to enable no-dead-spot proximity detection for
robot collision avoidance. AuraSense obtains >95% TPR
and >99% TNR in realistic on-robot experiments. AuraSense

is low cost and lightweight, and can be deployed on other
commercial off the shelf robots with minimal modification.

In the future, we decide to further boost the robustness of
the system in order to enable the robot implementing more
challenging tasks while performing collision avoidance. We
plan to address the robot movement interference mentioned
in Section III-B by exploring more advanced signal process-
ing techniques. We also plan to explore further applications
of the LSW, such as tactile sensing and object recognition.
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