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an mmWave-based motion-resilient universal speech enhancement system that integrates mmWave and audio. To mitigate
motion interference, we propose a two-stage method for robust vocal vibration extraction. Moreover, by proposing the
Vocal-Noise-Ratio metric to assess the prominence of the vocal vibration, we enable real-time voice activity detection. We
also design a complex-valued network that includes an attention-based fusion network for cross-modal complementing
and a time-frequency masking network for correcting amplitude and phase of speech to isolate noises. Using datasets from
46 participants, mmMUSE outperforms the state-of-the-art speech enhancement models by 26% in SISDR and 34% in STOI
on average. It also achieves SISDR improvements of 16.72 dB, 17.93 dB, 14.93 dB, and 18.95 dB in controlled environments
involving intense noise, extensive motion, multiple speakers, and various obstructive materials, respectively. Finally, in
real-world scenarios, including running, public spaces, and driving, mmMUSE achieves WER below 10%.
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Fig. 1. Applications of mmMUSE in daily life. Users can interact with smart devices equipped with mmMUSE
(e.g., smartphones, watches, and cockpits) for noise-resistant and motion-resilient voice interaction.
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1 INTRODUCTION

Smart systems that leverage advanced voice perception have been increasingly adopted in Internet of Things
(IoT) applications, from enhancing the voice quality of smartphone conversations to improving the driver’s
voice interaction with cars. Such voice-based smart systems can greatly enhance user experiences with their
social and physical environments by allowing higher-quality interactions through better voice perception. For
example, fixed devices such as in-car assistants (e.g., Li Auto’s MindGPT [5] and NIO’s NOMI [60]) enhance
the driver experience by enabling voice-activated tasks like path selection and cabin temperature adjustments,
allowing drivers to focus on driving. Similarly, wearable mobile devices (e.g., iPhone’s Siri [3] and Humane’s Al
PIN [39]) support voice interactions for tasks such as making calls, sending texts, and managing smart home
devices, enabling hands-free operation. Given the growing ubiquity of smart devices [9, 13, 44], advancing speech
enhancement technology for practical applications is a critical area of research.

Imagine users carrying smart devices strolling through crowded streets or driving on uneven roads. The om-
nipresent noise can hinder these devices from accurately processing voice commands, leading to unsatisfactory
user experiences. Therefore, it is imperative that smart devices incorporate advanced voice enhancement technolo-
gies to mitigate these disturbances effectively. However, the voice interaction systems embedded in current smart
devices, which predominantly utilize cost-effective microphones or arrays, are inadequate at attenuating noise in
environments with low signal-to-noise ratios (SNRs) [45, 67, 92, 97]. In contrast, millimeter-wave (mmWave)
radar, operating as active sensors, can precisely detect vocal cord vibrations [93], thereby capturing the clean
fundamental frequency components of voice signals. As such, a few recent studies [52, 102] have integrated
microphones with mmWave radars to deal with ambient noises to enhance speech recognition.
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However, these studies have not fully addressed the common issue of motion interference everywhere in
everyday life. Specifically, they extract vocal cord vibration signals (vocal signals) based on the differences in
mmWave phase signals. User-device motions, however, can shift vocal signals distributions across range bins.
Additionally, phase signals within the same range bin can also suffer from motion-induced distortions, as shown in
Fig. 4. Such distortion causes overlapping or loss of vocal frequency components (i.e., the fundamental frequency
and harmonics) and spectral leakage, hindering voice activity detection [52, 64] and voice authentication [49].

To mitigate the impact of motion interference, we devise a two-stage method for robust vocal vibration
extraction, first tracking the signals containing vocal information and then compensating for motion-induced
distortions. Our objective is to develop a system that enables users to engage in voice interaction naturally with
wearable or fixed smart devices in open environments, without auxiliary accessories such as earphones. Specifically, we
propose mmMUSE, an mmWave-based motion-resilient universal speech enhancement system with universality
across real-world conditions, such as intense noise, drastic user-device movement, clothing occlusion, and multiple
speakers. As shown in Fig. 1, mmMUSE enhances interaction in noisy open-field environments when integrated
into mobile devices (e.g., smartphones and smartwatches) or fixed platforms such as vehicle cabins. Leveraging the
ranging capability of mmWave radar, mmMUSE tracks the user’s reflected vocal signals in real-time. Furthermore,
it reconstructs the time-frequency (T-F) spectrograms of these signals to isolate the pure voice fundamental
frequencies. Simultaneously, a microphone captures comprehensive voice signals. mmMUSE then integrates the
mmWave and audio signals for voice activity detection (VAD) while optimizing computational resource efficiency.
To effectively enhance speech by fusing two modalities while considering both amplitude and phase, we design a
complex-valued fusion network based on attention mechanisms, followed by a T-F mask network that estimates
amplitude and phase information from the fused features. This multi-modal interaction allows mmMUSE to
integrate both modalities, producing clear voice signals that significantly improve downstream tasks like speech
recognition and translation. Specifically, the challenges we face during the system design process are as follows:

The first challenge is to obtain clean vocal vibration signals under extensive motion interference. The user-device
distance varies during motion, shifting vocal signal distributions across range bins. Thus, the system needs to
continuously track and determine which range bin contains the most vocal signals. Existing methods [52, 65, 102]
for extracting vocal vibration are based on the phase difference of a single range bin. However, during the
phase extraction, motion and direct current (DC) components of mmWave radar cause nonlinear modulation
of the vibration phases, which can overlap the vocal vibration frequencies. These methods do not consider the
movements across range bins, which are very common in real life, as we have pointed out. To resolve the issues, we
first propose an intensity-based neighborhood search algorithm to continuously track potential signals containing
the user’s vocal vibration. Then, we propose the Vocal-Noise-Ratio (VNR) metric to quantify vocal quality and
select the portion containing the most vocal signals. Finally, we design a motion compensation algorithm to
reconstruct the T-F spectrogram of the vocal signals, effectively neutralizing motion-induced distortions.

The second challenge is to detect the voice activities of the user. In daily life, the user may be in noisy places
with other people, resulting in a low SNR. The method relying solely on audio for voice activity detection can be
exceedingly challenging [14, 16, 21] with low SNRs. Moreover, voices of others may also activate the device. To
this end, we design an mmWave-based VAD algorithm utilizing the distance measurement capability of mmWave
radar. Based on the vocal information in mmWave signals, we develop a CFAR-based spectrogram masking
algorithm to eliminate radar noise and spectral leakage caused by motion interference. This approach efficiently
isolates vocal frequencies, yielding a purified spectrogram of vocal signals. Additionally, by using VNR to assess
the prominence of vocal signals, it precisely identifies the timing of the user’s speech through the mask, filtering
out non-speech activities outside of the speaking intervals to capture the user’s vocal signal.

The third challenge is to fuse the modalities of mmWave and audio for speech enhancement. To maximize the
utilization of data from both modalities, we employ a complex-valued network that considers both amplitude
and phase. mmWave signals contain fundamental frequency information of voice and thus have an intrinsic

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 218. Publication date: December 2025.



218:4 « Wanget al.

relationship with the audio signals. In cases where data from one of the modalities is missing, we use an attention
mechanism to interact and fuse global and local features of both modalities. For the fused data, we design a
T-F masking network that synthesizes a complex ratio mask (CRM), integrating both temporal and spectral
information to simultaneously correct the amplitude and phase of noisy speech.

The contributions of this paper are as follows:

e We propose an mmWave-based motion-resilient speech enhancement system called mmMUSE. It fuses
mmWave and audio signals to enhance speeches in cases of intense noises, macro motions, multiple
speakers, and common clothing obstructions around the throat area under complex conditions.

e We perform an in-depth investigation of how the modulation process of mmWave signal phases is affected by
motions, observing that vocal signals extracted from phase differences are distorted due to motion-induced
overlapping, which is difficult to separate. Furthermore, we observe that the vocal vibration velocities
are superimposed on body torso motion velocities without any overlapping. Based on it, we propose a
motion compensation method via Doppler spectrogram to extract vocal signals resilient against motion
interference.

o We design a pipeline for mmWave-based speech enhancement. Firstly, we design a CFAR-based spectrogram
masking algorithm to extract vocal frequencies from mmWave. By introducing the Vocal-Noise-Ratio metric
to assess the prominence of vocal signals, we achieve real-time voice activity detection. Moreover, we
design a two-stage complex-valued network that includes an attention-based multi-modal fusion network
and a T-F masking network for correcting the amplitude and phase of speech to isolate noises.

e To fully validate the effectiveness of mmMUSE, we recorded a paired dataset of mmWave and audio. We
invited 46 participants and conducted the recordings (data duration approximately 18 hours) under various
challenging conditions, including intense noises (with a minimum SNR of -15 dB), extensive motion,
multiple speakers, and different obstructive materials. We validate that the radar effectively enhances
speech within an angular range of (-60°, +60°) in azimuth and (-60°, +15°) in elevation relative to the user. It
features a field of view (FOV) of 80° horizontally and 40° vertically, making it suitable for daily handheld and
fixed device scenarios. Using the datasets, mmMUSE outperforms four state-of-the-art speech enhancement
models by 26% in SISDR and 34% in STOI on average. Additionally, it achieves SISDR improvements of
16.72 dB, 17.93 dB, 14.93 dB, and 18.95 dB in controlled environments involving noise, motion, multiple
speakers, and material obstructions, respectively. Finally, we evaluate mmMUSE in real-world scenarios
including running, public spaces, and driving, maintaining WER below 10%. The demo video can be found
at https://www.youtube.com/watch?v=HKQnhrOuwXIL.

2 BACKGROUND
2.1 Principles of mmWave Radar Sensing

mmWave radar comprises transmitting antennas (TX) and receiving antennas (RX). The TX emits periodic FMCW
chirps, which are reflected by the subject and captured by the RX. Subsequently, the transmitted and received
signals are mixed to generate intermediate frequency (IF) signals:

IF(t) = AiArexp [j27 (pt + fo) 7], (1)

where p represents the chirp rate, f; is the start frequency, and 7 is the signal delay. Thus, the frequency of the IF
signal is given by fir = 27 pz. These IF signals are then processed to estimate the subject’s range and velocity.
Furthermore, due to the millimeter-scale wavelength, the phase variations enable detection of micro-movements.

Range and Velocity Estimation. Due to the time of flight, a frequency shift occurs between transmitted and
received signals. Thus, the frequency of the IF signal (fir) is proportional to the distance (d) between the radar
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and the subject: d = fgipc, where c is the speed of light. For a moving subject, the phase of the IF signal changes

with the distance between the radar and the subject: ¢ = 27 fy7 = %, where A is the wavelength. Therefore,
the phase difference between consecutive chirps, separated by a time interval T, is linearly proportional to the
subject’s Doppler velocity v = LAT—?.

Vocal Vibration Detection. The vibration-induced tiny displacements (6 < A) can be expressed as:
c
= n, Agp. (2)
Both phase difference and IQ (In-phase and Quadrature) signals (see Equation 1) contain vibration-induced phase
variations. As shown in Fig. 5(b), the upper and lower spectrograms correspond to the phase difference and I1Q
signals, respectively, both capturing vocal vibrations.

It is worth noting that mmWave sensing of vocal vibrations is limited to voiced segments, such as vowels. To
address this limitation, mmMUSE adopts an mmWave-audio fusion strategy for full-sequence speech enhancement,
motivated by two key observations. First, vowels typically exhibit higher energy and function as acoustic anchors,
playing a dominant role in speech intelligibility and perceived clarity [18-20]. Second, speech is inherently
sequential, with voiced and unvoiced segments alternating. Robust mmWave cues from voiced regions can thus
support the enhancement of neighboring unvoiced segments through temporal modeling [28, 87]. In our speech
enhancement network, mmWave cues enhance voiced segments, while unvoiced segments are inferred from
audio and learned temporal dependencies.

2.2 Network Preliminary

Attention Mechanism for Fusion. Attention mechanisms have been widely adopted in multi-modal fusion [8,
71, 101], achieving notable success in natural language processing and computer vision. Attention modules such
as Squeeze-and-Excitation (SE) [37] and Spatial Attention (SA) [91] enhance multi-modal fusion by capturing
both global and local features. Moreover, attention mechanisms can effectively resist the situation where there
are losses in either modality [48, 52]. Additionally, residual connections [34] promote feature reuse and improve
generalization. In this paper, we design an attention-based fusion network for cross-modal complementing,
utilizing SE blocks, SA modules, and residual connections to enable efficient feature extraction.

Complex-valued T-F Masking Network. Most amplitude-only methods estimate the magnitude spectrogram
while reusing the noisy phase, which degrades performance, especially at low SNRs [15, 66, 103]. However, phase
is essential for natural and intelligible speech reconstruction [66, 103]. Although iterative methods improve
phase estimation [29, 59], their slow convergence limits real-time applicability [103]. Recent advances [1, 53, 97]
in T-F mask learning improve enhancement by integrating temporal and spectral cues. Compared to time-
domain methods [54, 68, 69], T-F domain approaches are more robust to SNR variations and can achieve better
performance, even with limited datasets [100]. Therefore, we adopt a complex-valued network to generate T-F
masks that jointly model both the amplitude and phase components of speech.

3 SYSTEM DESIGN

We design an mmWave-based motion-resilient universal speech enhancement system named mmMUSE, which
fuses mmWave and audio signals while considering both amplitude and phase to improve speech quality and
intelligibility under intense noise, extensive motion, clothing occlusion, and multiple speakers. As shown in
Fig. 2, we propose the following three modules.

Motion-resilient Vocal Vibration Extraction. We use an mmWave radar to transmit chirps and then extract
vocal signals from IF signals obtained from reflections. Motion interference leads to vocal signals being distributed
across multiple range bins, while the narrow width of each bin (just a few centimeters) still permits Doppler
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Fig. 2. mmMUSE, an mmWave-based motion-resilient universal speech enhancement system that leverages an
mmWave radar and a low-cost microphone to improve the resistance against noise, motion interference and
multiple speakers in complex environments.

shifts within a single bin. To obtain clean vocal signals under extensive motion interference, there are two issues
to be addressed. (1) Considering the vocal signal distributions to shift across range bins caused by user-device
motion, we propose an intensity-based neighborhood search algorithm to continuously trace signals containing
the most vibration information. (2) To eliminate motion-induced distortions in vocal signals within a single range
bin, we design a motion compensation algorithm that yields the refined vocal vibration spectrogram.

mmWave-based Voice Activity Detection. We design a CFAR-based spectrogram masking algorithm to extract
vocal frequencies from mmWave without acoustic noise. By using the Vocal-Noise-Ratio metric to assess the
prominence of vocal signals, we achieve real-time voice activity detection. This enables efficient elimination of
non-user voice parts, conserving computational resources.

Two-stage Speech Enhancement Network. To maximize the utilization of data from both modalities, we
design a two-stage complex-valued network that considers both amplitude and phase to enhance speech. The
network includes an attention-based fusion network for cross-modal complementing and a T-F masking network
for correcting amplitude and phase of speech to isolate noises.

3.1 Motion-resilient Vocal Vibration Extraction

In this section, we first provide a theoretical derivation of the interference caused by motion on mmWave phase
difference signals and IQ signals, and validate it through simulation experiments. Based on these preliminary
studies, we then devise a two-stage method for robust vocal vibration extraction, which first tracks signals
containing vocal information and subsequently compensates for motion-induced distortions.

3.1.1  Preliminary Study. As shown in Fig. 3, the received mmWave signals (S) consist of body torso motion (Sp),
sub-body motion (Sgp, €.g., head movements, facial expressions, and chest fluctuations), vocal vibration (Sy), and
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Fig. 3. The components of the radar’s IF sig- Fig. 4. Real-world motion interference on phase difference signals.
nal reflected from the user’s vocal cord area.

the internal DC component of the radar (Sq.), as expressed by:

S= Sv + Ssb + Sb + Sdc’ (3)
where both sub-body motion and vocal vibration are modulated by body torso motion:
So=S,-Sp  Sgp =Ssp - Sp. (4)

The phase (®) can be calculated through the quadrature(Q) and in-phase(I) components of the signal: & =

arctan (%) = arctan (%) We represent the phases of S, Sy, Sp, and Sy. as ¢y, dsp, Pp, and ¢yc,

respectively. Since arctan is nonlinear, ® does not equal the sum of the aforementioned phases. The phase
difference signal (A®) is calculated as A®(n) = ®(n) — ®(n — 1). Due to the nonlinear modulation, A® in the
frequency domain reveals the distortion of vocal signals caused by motion, as shown in Fig. 4. Motion interference
hinders the extraction of vocal signals.

To avoid explicitly calculating @, we can use IQ signals (as shown in Equation 1), thereby bypassing nonlinear
modulation. However, in the presence of motion, both the vocal vibration velocity and the sub-body motion
velocity are affected by the superposition of body torso motion, as described in Equation 4. In this case, the IF
signal can be expressed as:

IF(t) = AiAr exp |j (2nfor + 2nprt — mpt?)] . (5)
Substituting 7 = M yields the frequency of IF signals as:
2V 2pd
fir ~ 2V 2Pd ©)
c c
Here, V represents the velocity at different body positions. As a result, the frequencies of vocal vibration and

sub-body motion experience Doppler shifts [7]: f = w, where Vj, is the velocity of body torso motion.

Therefore, we can obtain the body torso motion frequency fp, vocal vibration frequency f,, and sub-body motion
frequency f;;, using Doppler fast fourier transform (FFT), where motion causes a frequency shift rather than
overlap, as shown in Fig. 6(b).

Simulation Experiment. To explore the interference of motion on the signal, we conducted a simulation
experiment. Fig. 5 illustrates the negative impact of motion on the extraction of vocal signals. The phase
difference spectrogram and Doppler spectrogram for the stationary vocal signal, shown in Fig. 5(b), serve as
a reference, revealing the vocal frequencies without motion interference. The simulations involve two motion
signals: V; with a constant speed of 0.4 m/s and V; with variable velocity up to 1 m/s, as illustrated in Fig. 5(a).
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Fig.5. Simulation of motion interference on phase difference and 1Q signals at different velocities. (a) V;: Constant
velocity of 0.4 m/s, V;: Variable velocity up to 1 m/s; (b) Phase difference spectrogram and Doppler spectrogram
(from top to bottom) showing vocal fundamental frequencies under stationary conditions; (c) Motion interference
under Vy; (d) Motion interference under V,.

The phase difference and its spectrogram, along with the Doppler spectrogram derived from the IQ signals,
modulated by motion, are shown in Fig. 5(c) and 5(d). The horizontal lines (Fig. 5(c)) and the arc-shaped lines
(Fig. 5(d)) in the phase difference spectrogram represent frequency components modulated by motion, leading to
the overlap of vocal frequencies. Compared to the phase difference spectrogram, the Doppler spectrograms in
Fig. 5(c) and 5(d) show vocal frequencies affected by Doppler shift due to motion, but without overlap.

Therefore, motion interference in Doppler spectrograms can be mitigated by compensating for the frequency
shift of the vocal signals. Due to the limitations of phase difference in removing the overlap-induced distortion,
we design a motion compensation algorithm that yields a refined vocal vibration Doppler spectrogram.

3.1.2  Vocal Vibration Signal Tracking. Due to user-device motion, the vocal signals are distributed across different
range bins, as shown in Fig. 6(a). We need to obtain the complete signals reflected from the vocal cord area to
acquire vocal signals. We design an intensity-based neighborhood search algorithm to continuously track signals
containing the most vocal information.

Considering that the signal with the highest intensity contains rich information about the user, we employ
Range FFT to process the mmWave IF signals within a time window of size W to track it in real-time. To avoid
interference from reflected signals outside the range of the user, we choose a detection range. The matrix of the
range spectrogram in this range is denoted by R shaped as M X W, where M represents the detection ranges. We
can calculate the range bin (rp,x) that contains the signal with the highest intensity by:

W
Fmax = argmax, Z |R(7, t)]. (7)
=1

We consider that the signal at r,,x may not contain the richest vocal signals. To capture the signal with the
most vocal information, we perform a search within a neighborhood of size N = 2n + 1, encompassing rmax and
its surroundings:

Sneigh ={R(r,t) | ¥ € [Fmax — M "max + 1]} . 3)
The Syeigh covers all potential reflection areas of the user. If 7, changes after the time W, resulting in discon-
tinuities in the signal’s phase and subsequent spectral leakage, we mitigate this effect by applying a window
function, such as a Hamming window, to smooth the signals in Spejgh over W.

For the signals in Syeigp, it is crucial to identify which segment within the neighborhood N contains the most
vocal signals. We can generate the spectrum of each segment S;(i € N) using the FFT and get its amplitude A;.
Subsequently, we employ CA-CFAR [46] to detect vocal frequencies in A; by analyzing the internal noise levels of
the radar, thereby generating a 0-1 mask M;. In this mask, regions likely containing vocal frequencies are set to 1,
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Fig. 6. Vocal vibration spectrogram extraction. (a) User-device motion shifts the range bin with the user’s
information; (b) Motion-induced modulated vocal vibration; (c) Spectrogram after the motion compensation; (d)
Purified spectrogram by masking.

while other noise is set to 0. Similar to the SNR, we introduce the Vocal-Noise-Ratio (VNR) metric to quantify the
vocal signals in S;:

2(M; - A)

R S M A ©
Specifically, signals within the neighborhood Speign contain nearly identical body reflections (from sub-body
and torso regions) and varying vocal content, with body reflections dominating due to their larger reflective
surface. Frequencies arising from both components may be marked as 1 in the mask. To mitigate errors in vocal
content estimation caused by body motion, we exclude the strongest energy components when computing M; - A;.
As aresult, a higher Iyng indicates a greater presence of vocal content. Thus, we select S,pt, the segment with
the highest Iynr, as the signal containing the most vocal signals for the time W. By reassembling Sop; from
non-overlap intervals W;, we obtain the optimal vocal signal St = Concat(SZ‘;lt, S:gzt, .
vocal vibration. For temporal synchronization with the microphone-recorded voice spectrograms, we employ

linear interpolation to upsample St to 16 kHz.

.) containing the user’s

3.1.3  Motion Compensation. Since a single range bin covers several centimeters, motion interference still exists
within the concatenated signal St. As shown in Equation 3, St encompasses essential components, including the
vocal vibration signal §, and the sub-body motion signal Sg;, both modulated by the user’s body torso motion.
Additionally, it contains the main Doppler velocity signal S, generated by the user-device body torso motion,
as well as the radar’s internal DC component Sy.. The spectrogram of St, shown in Fig. 6(b), indicates that
the frequency component with the highest intensity corresponds to the user-device body torso motion, which
is associated with the largest reflected area. The DC frequency consistently remains near zero, and the vocal
frequencies experience Doppler shifts, resulting in distortion.

To achieve the clean vocal frequencies of S, it is imperative to eliminate the motion-induced shift and additional
interference signals such as sub-body motion and DC components. Since St experiences varying degrees of
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frequency shifts due to body torso motion over time, it is not feasible to effectively use filters in the time domain
to isolate noises from S,. Therefore, we perform denoising in the T-F domain of St.

As shown in Fig. 6(b), the vocal vibration is modulated by the body torso motion between the user and the
device, resulting in frequency shifts. However, due to the oscillatory nature of the vocal vibration, these shifts are
symmetric around the body torso motion frequency. Based on this, we propose a motion compensation algorithm
to obtain the refined vocal vibration. We conduct short-time fourier transform (STFT) on St, extracting the
frequencies at time t, denoted as Fs(t). The amplitude of S, induced by the body torso motion, is predominant.
Hence, the body torso motion frequency f;, is determined using fj, = arg maxy A(f, t), where A(f, t) represents the
amplitude at frequency f and time t. The shift at time ¢ is compensated by adjusting the frequency components:

Fs(f,t) = FreqShift(Fs, f;), (10)

where the operator FreqShift(-, f;,) shifts Fs along the frequency axis by fj, towards zero-frequency, yielding
motion-free Fs, as shown in Fig, 6(c). Specifically, vacant regions caused by this shift are zero-padded to preserve
the original spectrum dimensions.

Since most of the human speech is above 90 Hz [89], and sub-body motions like head movements, facial
expressions, and chest fluctuations are generally lower, we establish a cutoff frequency fuutos to filter out the
sub-body motion signal Sg;. Thus, we can obtain the spectrogram of the refined vocal signal Fs:

Fs(fot) if > frurofs

0 otherwise.

Fs,(f.1) = { (11)

3.2 mmWave-based Voice Activity Detection

The radar can actively sense the vocal vibration of the user, undisturbed by external sound sources. Utilizing this
capability, we extract vocal signals from the mmWave signals to detect the voice activities of the user. This allows
for the localization of the speech timings recorded by the microphone, thereby isolating and removing voice
components from non-user speakers to obtain truly effective voice signals. Without this detection mechanism,
substantial computational resources would otherwise be expended processing irrelevant noise.

However, how can we determine when the signals reflected by the user will exhibit vocal information? To
address this, we develop a CFAR-based algorithm that effectively identifies the occurrence times t of vocal vibration
in the user and refines the frequencies of the vibration to obtain a clearer spectrogram of vocal vibration ¥s,.
Additionally, using the identified vocal activity times ¢, we perform vocal activity localization on the spectrogram
¥s, recorded by the microphone.

We apply the CA-CFAR at each moment ¢ within Fs, to generate a frequency mask M;, analyzing for vocal
frequencies. For each moment ¢, we apply the M, to ¥s,:

Fs, (1) = M; - Fs, (1), (12)

where 97-’5U is a refined vocal spectrogram, shown in Fig. 6(d). Based on s, (t) and M;, we can calculate Iyng (see
Equation 9) to determine the voice activity at time ¢:

Fs, () ifIynr 2 a,

. (13)
0 otherwise,

s, (1) ={

where %a is the audio spectrogram after VAD and « is determined by the statistical values of Iyng during non-
speaking moments, obtained by recording mmWave data in silent conditions. Here, due to motion compensation,
the a remains unaffected. As shown in Fig. 7, there is a significant difference in the Iyng between speech segments
and silent segments, thus allowing « to be determined. Specifically, since unvoiced consonants are undetectable
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Fig. 7. Iynr under vocal and silent segments.  Fig. 8. mmWave-based voice activity detection.

1.00 1.00 0.95 1.00

- 0.90 . k= = g ke — =5y
=~ =k =k = = . 0.90 0851 N 0.83 - .
0.85 S~ 0.90 —ﬁ—<b——+—-ﬁ——‘——-i - —\—i’——l——f——‘-—-l 0.95 »,
2 heuin o0 ~e 9 <. 5 -~ N\
g —. 5 ~—. £0.75 -~ = u
£ 0.70 —& - SileroVAD % 0.80 &« SileroVAD (S el ~ -« SileroVAD . 2090 —& - SileroVAD .
2 WebRTC = WebRTC N E065 WebRTC ~ WebRTC \,
0.55 —4— mmWave-based 0.70 =h= mmWave-based 0.55 =d= mmWave-based 0.85 =de= mmWave-based L}
404 0.60.+ 0.45} 804
M50 F 6 5 0 s 15 10 5 0 5 -0 -15 5 10 5 0 5 0 s 35 50 5 -0 -is
(a) SNR (dB) (b) SNR (dB) (¢) SNR (dB) (d) SNR (dB)

Fig. 9. Performance of VAD across SNRs. (a) Accuracy, (b) F1-score, (c) Precision, (d) Recall.

by mmWave, we use a state machine that merges speech segments separated by brief silence [64, 76]. Fig. 8 shows
that the proposed method accurately identifies user presence while efficiently reducing computational overhead.

Performance under Varying SNRs. To evaluate the effectiveness of our mmWave-based VAD, we use paired
speech and mmWave recordings, where speakers speak freely with natural body movements. After motion
compensation, the mmWave data is processed for VAD analysis. We select two state-of-the-art audio-based VAD
algorithms: SileroVAD [76] and WebRTC VAD [27], as baselines. Since precise manual annotation is challenging,
we adopt frame-level outputs from SileroVAD under clean speech conditions as pseudo-ground-truth labels.
Specifically, all methods use a state machine with a minimum silence duration of 60 ms. We then evaluate the
effectiveness of different VAD algorithms under various SNRs, ranging from 15 dB to -15 dB, using accuracy,
F1-score, precision, and recall as metrics. While the pseudo-ground-truth labels may contain inaccuracies, our
focus is on performance trends across noise conditions rather than absolute metric values.

As shown in Fig. 9, the performance of SileroVAD and WebRTC degrades significantly under low-SNR conditions,
with WebRTC generating substantial false positives. In contrast, our mmWave-based VAD remains robust against
airborne noise, benefiting from mmWave’s direct sensing of vocal vibrations during speech. Moreover, the motion
compensation algorithm ensures stability and usability even during user movement.

3.3 Two-stage Speech Enhancement Network

We design a two-stage complex-valued speech enhancement network, as illustrated in Fig. 2. This network
comprises an attention-based fusion network and a T-F masking network. The fusion network effectively extracts
and integrates features from both mmWave and audio modalities. The T-F masking network effectively processes
fused feature maps, generating the complex ratio mask (CRM) [90] while simultaneously estimating amplitude
and phase to produce clean audio spectrograms. Finally, clean speech is synthesized using iSTFT. The network is
trained using Scale-Invariant Signal-to-Distortion Ratio (SISDR) [47] loss.

3.3.1 Fusion Network. As shown in Fig. 2, the complex-valued fusion network, composed of SESA-based residual
blocks (SESA-Res), Interactive Modules (IMs), and Enhancement Modules (EMs), extensively utilizes residual
connections [34] for feature reuse. Specifically, the SESA-Res incorporates Squeeze-and-Excitation (SE) [37] and
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Spatial Attention (SA) [91] modules to capture both global and local features. This overall architecture enables the
model to focus more on the critical aspects of data, thereby enhancing its generalization capabilities on unseen
data. mmWave and audio spectrograms each enter two network branches for feature extraction. Each branch
consists of a complex convolution (CConv) [86] layer, a batch normalization (BN) layer, and an SESA-Res layer.
Subsequently, the outputs of the two branches are linked to a single IM for feature interaction, producing two
feature map outputs. We employ three such blocks to increase their channel from 1 to 64. Afterwards, the outputs
of both branches are fed into three similar blocks, where EMs replace the previously mentioned IMs, reducing
the channel count from 64 back to 1. Eventually, the feature maps of the two modalities are fused together. Next,
we detail the three modules: SESA-Res, IM, and EM.

SESA-based Residual Block. As shown in Fig. 10, we develop an SESA-Res to extract features from two
modalities, comprising a residual block that incorporates a CConv layer, an SE block, and an SA module for
enhanced feature extraction and localization. Input features S € RF*WXC first pass through a CConv layer,
yielding output X € RF*W*C We apply an SE block [37] to X, performing channel-wise recalibration. The SE
block first applies global average pooling to extract channel features, which are then passed through two fully
connected layers with a ReLU and sigmoid activation to produce channel-wise weights W € R'*C_ These
weights are applied to X via scalar multiplication, resulting in feature maps X’ € RF*WXC The real part X,
and imaginary part X; are separately input into an SE block to produce X] and X]. Subsequently, we utilize
an SA module [91] to extract spatial features from X’. It uses average and max pooling operations across the
channel dimension, concatenates the resulting feature maps, and passes them through a CConv layer followed by
a sigmoid activation to generate a spatial attention map A € REXWX! This attention map is applied to multiply
X', highlighting important spatial regions, resulting in feature maps X’ € RI*W*C Finally, we concatenate a
residual block with X"’ to construct an SESA-Res as a fundamental module, expressed as:

P =SA(SE(CConv(S))) +S, P e RIXWxC, (14)

Interactive Module. We develop an IM for mmWave and audio features to interact by leveraging the intrinsic
correlations between modalities. As shown in Fig. 11, the IM inputs the mmWave feature map (P,,) and the audio
feature map (P,) into separate SE blocks to generate weighted feature maps P;, and P;, respectively:

Prln =Pm'SEm(Pm), P; =Pa'SEa(Pa)- (15)

Subsequently, the SA modules extract local features from P}, and P/, respectively. Finally, P, is supplemented by

the global and local features of P,, and similarly for P,,, producing final outputs I,, € RF*W*C and [, € RFIXWXC;
Iy = (P - SEq (Pa)) © SAa(P) + P,

Iy = (Pa - SEmy (Pm)) © SA(PL,) + Pa, (16)
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where © denotes element-wise multiplication.

Enhancement Module. We develop an EM to further fuse audio and mmWave feature maps. As shown in
Fig. 12, the mmWave feature map (P,,) and the audio feature map (P,) are concatenated to form G = [Pp,; P,].
Subsequently, G passes through a CConv layer to yield the feature map Gecony- A BN layer and a sigmoid function
are applied to both the real and imaginary parts, resulting in the feature map G’. Next, G’ is multiplied with P,
to obtain the feature E,, for enhancing mmWave features, which is simultaneously used to enhance the audio
features. Similarly, E, is obtained. Finally, the feature maps are updated:

Py =Pm+Epm Pa=Py+Es Ppy,Py€ RV (17)
where P,, and P, are the enhanced mmWave and audio feature maps, respectively. In the final EM of the fusion
network, only P, is used as the final fused feature, while the other EMs output both branches.

3.3.2 T-F Masking Network. The T-F masking network generates a CRM that adjusts amplitude and phase of
noisy speeches, thereby producing a clear speech spectrogram. To enhance mmMUSE’s generalization capabilities
and reduce the risk of overfitting, the CRM is applied to the original audio spectrogram to preserve the integrity
of the data [90]. The network consists of an encoder and a decoder with cross-layer connections, as shown
in Fig. 2. The encoder is used to extract features, and the decoder reconstructs the feature map. Between the
encoder and the decoder, SESA-Res blocks are utilized to maintain signal integrity and minimize information loss.
Additionally, cross-layer connections are employed to preserve details from earlier layers.

Encoder. The encoder has 4 levels of CConv layers, each performing incremental feature extraction from fused
maps. Following each CConv layer, a complex BN layer and a Leaky ReLU function [56] are applied. The layers
progress from using 16 kernels (3 x 3) at a stride of 2 for initial downsampling, to subsequent layers that increase
the channel count from 32 to 128, producing increasingly refined feature maps m;, my, ms, and my.

Decoder. The decoder module employs 4 symmetrical complex deconvolution layers to reconstruct the spectro-
gram. 4 deconvolution layers are linked through cross-layer connections to the outputs of the encoder, my, ms,
mg, and my, producing a single-channel feature map. Each deconvolution layer is followed by a complex BN layer
and a Leaky ReLU function. Ultimately, a CConv layer adjusts the size and details to the final output dyy;.

CRM Estimation. CRM is used for speech enhancement by isolating speech from noisy environments. Firstly,
we obtain the magnitude spectrogram of doy, denoted as Mpqg = |dout|- We apply the hyperbolic tangent function
to constrain Mp,e within [0,1), defined as Mmag = tanh(Mp,g). The phase of doy is derived as Mphase = dout/Mmag,
obtaining the CRM Mcrm = Mmag . Mphase. This CRM filters the noise-mixed spectrogram Fgise to extract clean
speech through:

O

A - 0
F = Mcrum * Froise = [Mcrum| * |Froise] - € " N)- (18)

The clean signal $ is recovered by applying iSTFT to F.
3.3.3 Loss Function. Given the limitations of mean squared error in phase estimation for speech enhancement [15],

we adopt SISDR as a time-domain loss function. SISDR evaluates speech quality independently of amplitude
variations, focusing on signal fidelity:

2
Starget
LSISDR =10 loglo %. (19)
|Serror|
The components are defined by:
Serror = ~§ - Stargeta
S. 20
{ Starget = %S, ( )

where $, S denotes the estimated speech and ground truth, respectively.
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Fig. 13. Experimental setup: (a) An mmWave radar and a microphone receive signals from subjects; (b) An electric
slider adjusts user-device motion velocities; (c) Different materials placed over the throat area.

4 EVALUATION THROUGH CONTROLLED EXPERIMENTS

4.1 Experiment Setup

Hardware. The platform is based on an mmWave radar, a laptop, and a single microphone, as shown in Fig. 13(a).
We employ TI's IWR6843ISK [83] radar and Infineon’s BGT60TR13C [41] radar to capture vocal signals. For TI's
IWR6843ISK radar, we use DCA1000EVM [85] to collect raw data. IWR6843ISK and BGT60TR13C both transmit
FMCW signals from 60 to 64 GHz. Specifically, mmMUSE uses an mmWave radar in a Single Input Single Output
(SISO) configuration with one TX and one RX. For portability in outdoor scenarios, we opt for the BGT60TR13C,
whereas the IWR6843ISK is utilized in indoor settings. The detailed configurations of radars are shown in Table
1. This configuration enables our radars with a 4.2 cm range resolution. For BGT60TR13C, the vocal vibration
sampling rate is 10000 Hz, and for IWR6843ISK, it is 2500 Hz, ensuring the capture of all vocal vibration.

Software. We control the radar using TI's mmWaveStudio GUI [84] or Infineon’s Radar Fusion GUI [40] on the
laptop, configured with the above-described parameters. We write a Python script to simultaneously control the
microphone and GUI, capturing both mmWave and audio signals.

Dataset. We invited 22 male and 24 female volunteers to participate in our experiment. Our studies were
approved by the Institutional Review Board (IRB) of our institution. Each volunteer was required to select 15
voice commands from ok-google.io [26] and 13 sentences from the TIMIT Corpus [22], and read each sentence
10 times with each repetition lasting one minute. As shown in Fig. 13(a), participants were asked to maintain

Table 1. Configurations of the mmWave radars.

IWR6843ISK | BGT60TR13C
Frame periodicity 0.4 ms 1ms
Chirps per frame 1 10
Frequency slope 90.018 MHz/ps 60 MHz/ps
Chirps’ idle time 60 pus 40 ps
Chirps’ ramp end time 40 ps 60 us
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a distance of approximately 0.3-0.5 m from the microphone and the mmWave radar. We collected a total of
15333 paired data samples, totaling approximately 15 hours of data. Each sample contained both mmWave and
audio signals, lasting 3.6 seconds. Specifically, we randomly selected 80% of the samples from both male and
female groups for training and allocated the remaining 20% for testing to ensure gender balance. This dataset
is referred to as BasicDataset. The BasicDataset is used exclusively for training and testing in Section 4.2 and
does not include data from Section 4.3, which is used solely for testing. Therefore, our model is trained solely in
static noise environments using BasicDataset and tested under various conditions, including different velocities,
distances, angles, multiple speakers, and varying thicknesses of different obstructive materials.

Metrics. We evaluate mmMUSE using the following widely adopted metrics. Higher scores indicate better quality.

(1) Scale-Invariant Signal-to-Distortion Ratio (SISDR) [47] is a comprehensive assessment of speech clarity and
distortion, releasing dependency on amplitude scaling.

(2) Short Time Objective Intelligibility Metric (STOI) [80] is designed to quantify intelligibility with scores
ranging from 0 to 1, correlating with the word error rate.

(3) Perceptual Evaluation of Speech Quality (PESQ) [75] evaluates the quality of speech ranging from -0.5 to 4.5.

We prioritize speech clarity (SISDR) and intelligibility (STOI), which effectively measure improvements in human-
machine interaction and call quality. PESQ aims to emulate the human perception of speech quality, focusing on
auditory attributes, which have minimal impact on human-machine interaction.

4.2  Overall Performance

We generate the noisy speech by mixing the speech from BaseDataset with noises from the TUT dataset [36],
which contains 10 noisy scenes (e.g., shopping centers, subways, and pedestrian streets). Each participant’s voices
are mixed with 30 different noises to generate noisy speeches with SNRs ranging from -15 dB to 15 dB. The SISDR
metrics for noisy speech at different SNRs closely correspond to their respective SNR.

Baselines. We compare mmMUSE with current state-of-the-art speech enhancement networks such as MP-
SENet [53], PHASEN [97] and the open-source tool Resemble Enhance [74]. Additionally, we make efforts to
reproduce RADIOSES [65], referring to the GitHub repository [4]. MP-SENet and PHASEN are T-F domain methods
using dual-stream networks to process amplitude and phase for speech enhancement. Resemble Enhance applies
a complex-valued network for noise separation and subsequent speech enhancement. RADIOSES integrates time-
domain mmWave and audio signals to enhance speech. Notably, all models serving as baselines are adequately
and fully pre-trained on our collected dataset before being validated on the same test set.

Furthermore, we conduct an ablation study to quantify the effectiveness of our system for comparison:

¢ Noisy speech after VAD refers to the Noisy speech processed with VAD.
e Speech-only, where the network operates without mmWave signals, thus removing the mmWave subnetwork.
e mmWave-only, where the network operates without audio signals, thus removing the audio subnetwork.

e W/O Phase, where the network takes the amplitude spectrograms of both mmWave and audio as input, and
reuses the phase of the noisy audio for speech reconstruction.

e W/O Attention, where the network operates without attention mechanisms. We remove the SESA-Res and IM
from the fusion network and replace SESA-Res with classical residual blocks [34] in the T-F masking network.

e W/O Masking, where the T-F masking network does not generate a complex ratio mask (CRM) but directly
estimates the enhanced speech spectrogram.

In this section, we conduct a detailed analysis of mmMUSE’s enhancement performance under varying SNRs
ranging from -15 dB to 15 dB. Table 2 shows that the average metrics of SISDR, STOI, and PESQ reach 15.79
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Fig. 14. Performance of mmMUSE across SNRs.

dB, 0.91, and 2.44, respectively. Correspondingly, the average improvements in these metrics are 16.72 dB, 0.37,
and 0.94, respectively. These results demonstrate mmMUSE’s robustness across varying noise levels. mmMUSE
achieves the best performance in SISDR and STOI, demonstrating its effectiveness in enhancing speech clarity and
intelligibility. Due to the time-domain transformation operation of iSTFT, there may be slight changes in timbre,
which can lower PESQ scores but do not impact the application of mmMUSE. Compared to audio-only methods
like MP-SENet, PHASEN, Resemble Enhance, and Speech-only, mmMUSE achieves superior performance in SISDR
and STOI due to the clean vocal information provided by mmWave. As Fig. 14(a) and 14(b) illustrate, mmMUSE
surpasses audio-only methods across SNRs, achieving the average SISDR improvements of 3.54 dB and over 0.19
STOI improvement. However, Fig. 14(c) shows mmMUSE’s PESQ outperforms PHASEN and Resemble Enhance
at lower SNRs but is slightly lower at higher SNRs. The trade-off is attributed to mmWave integration that
marginally impacts timbre while maintaining intelligibility. Unlike RADIOSES, which relies only on time-domain
features of mmWave and audio while ignoring frequency information, mmMUSE exploits both time and frequency
domains for superior performance. Additionally, the VAD module effectively detects vocal segments in noisy
speeches, enhancing SISDR, STOI, and PESQ by 4.02 dB, 0.30, and 0.15, respectively. Overall, mmMUSE surpasses
these methods, achieving average improvements of 3.23 dB in SISDR and 0.22 in STOI compared to the baselines,
effectively leveraging the intermodal correlations.

Furthermore, Table 2 also presents the results of the ablation study. mmWave-only cannot fully enhance
speech, with an average SISDR reduction of 6.18 dB due to incomplete capture of the vocal signal. Removing

Table 2. Performance comparison among speech enhancement methods under different conditions.

| SISDR | STOI PESQ

Noisy speech -0.93 0.54 1.50
Noisy speech after VAD 3.09 0.84 1.65
MP-SENet [53] 13.45 0.70 2.96
PHASEN [97] 12.74 0.66 2.30
Resemble Enhance [74] 11.83 0.65 2.15
RADIOSES [65] 12.21 0.72 2.57
Speech-only 11.00 0.87 2.05
mmWave-only 9.61 0.84 1.90
W/O Phase 8.65 0.80 1.74

W/O Attention 9.03 0.81 1.82
W/O Masking 9.52 0.82 2.00
mmMUSE 15.79 0.91 2.44
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Fig. 15. Experimental setup for user-device relative motion: The participant faces the radar and microphone,
with the electric slider moving at velocities from 0.2 m/s to 1 m/s.
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Fig. 16. Ablation study for motion interference removal.

attention mechanisms, the W/O Attention setup fails to utilize both modalities’ information, resulting in worse
performance than audio-only methods. Moreover, the performance of the W/O Phase drops significantly compared
to mmMUSE, where SISDR, STOI, and PESQ decrease notably by 7.14 dB, 0.11, and 0.70, respectively. This highlights
the importance of phase information for speech enhancement under high noise levels. Removing the learned
masking forces the model to directly reconstruct the full spectrogram, which reduces generalization ability
and results in an SISDR drop of 6.27 dB. In contrast, T-F masking explicitly modulates the noisy spectrogram,
suppressing the distribution of noise and thereby improving enhancement stability. Therefore, the complex-valued
design, attention mechanism, and T-F masking in mmMUSE ’s network architecture enable it to fully exploit
the complementary strengths of mmWave and speech modalities. By jointly leveraging amplitude and phase
information, the masking operation modulates the noisy spectrogram to achieve optimal performance.

4.2.1 Ablation Study for Motion Interference Removal. We place the device on an electric slider and set the
user-device velocity from 0.2 m/s to 1.0 m/s, positioning it directly in front of the participant’s head to assess the
effectiveness of mmMUSE’s motion interference removal at -5 dB SNR. The experimental setup is shown in Fig. 15.
For comparison, we remove the motion-resilient vocal vibration extraction method from mmMUSE marked as
W/O motion removal. The model used for testing is trained solely on static data (BasicDataset). As shown in
Fig. 16, compared to the complete mmMUSE, the average reductions in SISDR, STOI, and PESQ are 2.96 dB,
0.17, and 0.54, respectively, across various velocities. Motion interference significantly reduces the intelligibility
and clarity of the enhanced speech. Furthermore, the average SISDR for W/O motion removal is comparable to
the audio-only method, but STOI and PESQ are reduced by 0.14 and 0.26, respectively, due to additional noise
introduced by motion interference in the mmWave. These results indicate that the motion-resilient vocal vibration
extraction method in mmMUSE effectively removes motion interference, thereby enhancing performance.
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Fig. 19. Generalization for unknown users across SNRs.

4.2.2  Analysis of Data Composition. To analyze the impact of data composition on system performance, we
explore the impact of gender and text types on mmMUSE. Googleok.io [26] consists of brief commands, while the
TIMIT Corpus [22] contains more complex, longer sentences.

Impact of gender. As shown in Fig. 17, both male and female participants achieve SISDR over 15 dB, with STOI
and PESQ scores of at least 0.90 and 2.24, respectively, across SNRs from -15 to 15 dB, illustrating mmMUSE’s
effectiveness for all genders. Males typically have a lower fundamental voice frequency, usually below 155 Hz [89].
This characteristic allows the radar to capture more fundamental frequency information from males than females.
Impact of text types. Fig. 18 shows that mmMUSE consistently achieves an SISDR gain of over 15 dB, with
STOI and PESQ scores reaching at least 0.90 and 2.23, respectively, across SNRs from -15 to 15 dB for both text
types. Performance on the TIMIT Corpus is slightly lower than on Googleok.io, as the TIMIT Corpus contains
longer and more complex sentences, leading to unintentional swallowing of voices by participants.

4.3  Robustness Analysis

To validate the performance of mmMUSE across various scenarios, we carry out robustness experiments with
unknown users, different velocities, distances, angles (azimuths and elevations), multiple speakers, as well as
varying thicknesses of different obstructive materials, encompassing 3 hours of paired mmWave and audio data.
Notably, the data from the controlled experiments remains unseen to mmMUSE, which is trained solely in static
noise environments with BasicDataset.

4.3.1 Generalization for Unknown Users. We collect mmWave and audio data using unseen texts from 12
new volunteers, both of which are not included in the BasicDataset, to evaluate generalization performance.
Additionally, we introduce unseen noises from the TUT dataset [36] to generate noisy speeches, with SNRs
ranging from -15 dB to 15 dB. As shown in Fig. 19, the Known user average represents the results for users
included in the test set of the BasicDataset. For unknown users, mmMUSE maintains an average SISDR, STOI,
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Fig. 20. Experimental setup for distances and angles: (a) The device’s azimuth relative to the participant ranges
from 0° to 90°, with distances set from 0.2m to 3m; (b) The device’s elevation relative to the participant ranges
from -90° to 90°, with distances between 0.5m and 1Tm.
”

9
0.90 230

215

PESQ

2.00

0.94

0383
=

SISDR

0.82

(b)

Fig. 22. Impact of elevations.

and PESQ of 15.93 dB, 0.83, and 2.66, respectively, comparable to the Known user average (15.79 dB, 0.91, and
2.44). These results demonstrate that mmMUSE can generalize to unknown users. The fusion network within
mmMUSE utilizes SESA-based residual blocks for feature reuse, and the T-F masking network estimates the CRM
that is applied to the original audio spectrogram without compromising its integrity. This endows mmMUSE with
robust generalization capabilities.

4.3.2 Distance and Angle. We systematically investigate the impact of the user-device distance, as well as the
device’s azimuth and elevation relative to the participant, on mmMUSE. The experimental setup for distance
and azimuth is shown in Fig. 20(a), where the azimuth of the microphone and radar relative to the participant
varies from 0° to 90°, and the distance ranges from 0.2 m to 3.0 m. Since the vocal vibration is symmetrical, we
only test the azimuth range from 0° to 90°. Additionally, the elevation of the microphone and radar relative to the
participant varies from -90° to 90°, with distances fixed between 0.5 m and 1.0 m, as depicted in Fig. 20(b).

Impact of distances and azimuths. As shown in Fig. 21, mmMUSE’s performance decreases with increasing
distances and angles. However, it remains comparable to PHASEN, MP-SENet, and Resemble Enhance. These
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Fig. 23. Impact of velocities: the values represent the average performance of the device relative to the participant,
moving at velocities from 0.2 m/s to 1 m/s within an azimuth range of 0° to 90°.

—&—0.2m/s —&— 0.4 m/s 0.6 m/s ~—4— 0.8 m/s 1.0 m/s —+ = Noisy speech
14.0 0.9 2.50
— 2.20)
~13.0 -
a 0.85 s ;
=z 5 ©'1.90
& 120 =4 2]
2 2 & 1.60)
@ 110 .
: ESESEES 1.30
10.0=5 30 50 90 0.65=5 30 50 90 1.00=5 30 %0 90
() Azimuth (°) (b) Azimuth (°) (©) Azimuth ()

Fig. 24. Impact of velocities and azimuths.

models gain average 10.63 dB of SISDR. Specifically, Fig. 21(a) illustrates that mmMUSE’s SISDR gradually declines
from 0.2 m to 3.0 m but remains stable above 11 dB, still higher than the aforementioned baselines. Similarly,
Fig. 21(b) and 21(c) demonstrate that the STOI and PESQ consistently maintain performance levels of at least
0.80 and 1.91, respectively. Regarding angle, Fig. 21 indicates a gradual decline in performance from 0° to 90°, yet
mmMUSE still effectively enhances speech. Overall, although mmWave’s ability to capture the vocal vibration
decreases at longer distances (> 1.5 m) and extreme angles (> 60°), the integration of audio signals in mmMUSE
effectively counteracts the impacts of distance and angle, thus maintaining considerable performance.

Impact of elevations. As shown in Fig. 22, the primary benefits of mmWave for mmMUSE are concentrated
within the elevation range of 15° to -60°. This occurs because, at higher elevations relative to the participant,
mmWave signals are obstructed by other body parts, preventing the capture of the vocal vibration. However,
the elevation range of 15° to -60° is suitable for most practical applications. Furthermore, although mmMUSE’s
performance decreases at higher elevations (reaching a minimum SISDR of 10.02 dB), it still maintains performance
comparable to audio-based speech enhancement models. This demonstrates that our strategy of fusing audio
with mmWave enables the two modalities to complement each other, accommodating different spatial positions.

4.3.3  User-device Relative Motion. As shown in Fig. 15, we place the device on an electric slider to explore the
impact of user-device velocity (0.2 m/s to 1.0 m/s) and the device’s azimuth relative to the participant (0° to 90°)
on mmMUSE ’s performance under -5 dB SNR, with the slider traveling a distance between 0.5 m and 1.0 m.

Impact of velocities. As shown in Fig. 23, compared to the static performance at a distance between 0.5 m
and 1.0 m, with an SISDR of 12.76 dB, mmMUSE maintains stable average performance across all azimuths,
with fluctuations not exceeding 5%. Fig. 23(a) shows that average SISDR across all azimuths exhibits minor
fluctuations across velocities, ranging from a low of 12.01 dB to a high of 12.36 dB, with an average of 12.16 dB.
This indicates that mmMUSE effectively maintains the performance under dynamic conditions, demonstrating
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Fig. 25. Impact of obstructive materials.

Fig. 26. Experimental setup for obstructive material thicknesses.

excellent robustness. Fig. 23(b) and 23(c) show that fluctuations in STOI and PESQ across all azimuths both do
not exceed 2% of the average values, indicating that speech quality and intelligibility are well preserved across
various motion velocities.

Impact of azimuths with motion. As shown in Fig. 24, mmMUSE is more sensitive to azimuth variations.
Fig. 24(a) reveals that SISDR performance typically declines with increasing azimuths across velocities, decreasing
from an average of 13.22 dB at 0° to 11.28 dB at 90°, a 15% reduction. Similarly, Fig. 24(b) and 24(c) demonstrate that
STOI and PESQ decrease by 6% and 12%, respectively, from 0° to 90°. Overall, mmMUSE’s performance is impacted
by the azimuth because the structure of the vocal cords inhibits mmWave from capturing comprehensive vocal
vibration from the side. Nonetheless, mmMUSE still effectively enhances speech by integrating audio signals.

4.3.4 Obstructive Materials. As shown in Fig. 13(c), we simulate daily clothing obstructions by placing eight
different materials over the throat area: blended fiber (BL), synthetic fibers (polyester [PE], acrylic [PAN],
polyamide [PA], polyurethane [PU]), and natural fibers (wool [WO], cotton [CO], linen [LI]), each with a
thickness of 5 mm. Additionally, we explore the impact of varying material thicknesses (3 mm to 20 mm) on
mmMUSE, as shown in Fig. 26. All experiments are at -5 dB SNR.

Impact of material types. Fig. 25(a) shows that SISDR performance across materials is stable, ranging from
13.90 dB to 13.99 dB with an average of 13.95 dB. Similarly, Fig. 25(b) and 25(c) illustrate that fluctuations in
STOI and PESQ among the materials do not exceed 2% and 5%, respectively. The types of obstructive materials
used nearly cover all types of clothing materials encountered in daily life. Therefore, these results emphasize
mmMUSE’s adaptability and stability in the presence of material obstructions, highlighting its robust performance
under various physical obstruction conditions.

Impact of material thicknesses. Fig. 27(a) shows that the average SISDR fluctuations for Blended Fiber,
Synthetic Fiber, and Natural Fiber do not exceed 2%, 2%, and 3% across various thicknesses, respectively, indicating
mmMUSE’s stable performance. Fig. 27(b) and 27(c) demonstrate high stability in STOI and PESQ improvements
compared to the original noisy speech across various material thicknesses. Specifically, STOI and PESQ metrics
maintain comparable performance at both the maximum thickness of 20 mm and the minimum of 3 mm. These
results highlight mmMUSE’s robustness in facing physical obstructions of various material types and thicknesses,
attributable to the penetrating capabilities of mmWave, effectively handling everyday clothing obstructions.
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Fig. 28. Impact of multiple speakers.

4.3.5 Multiple Speakers. mmMUSE is designed to focus on the target user, while treating other speakers as
background noise. Voice interference significantly reduces the intelligibility of the target user speech, thereby
hindering human-machine interaction. However, mmWave radar can leverage its range resolution capability to
define a spatial detection zone, thereby isolating interference from non-target users. To test the performance
of mmMUSE in multiple speakers, we randomly select participants with varying numbers of speakers ranging
from 2 to 5 to mix voices. In each group of mixed voices, we alternately enhance the speech of all participants,
treating each one in turn as the subject. As shown in Fig. 28, SISDR, STOI, and PESQ remain at or above 12.92,
0.93, and 2.57, respectively, maintaining excellent performance. Fig. 28(a) shows that the improvement of SISDR
demonstrates mmMUSE’s adaptability in multi-person conditions. Although the performance decreases with
more participants, the improvement increases from 14.45 dB for two people to 15.97 dB for five people, indicating
the system’s enhanced ability to separate speech from noise in more complex environments. Fig. 28(b) and 28(c)
show that although speech intelligibility and quality decrease with an increasing number of mixed voices, the
fluctuations in STOI and PESQ remain less than 2% below the average. Overall, mmMUSE demonstrates enhanced
capability in more complex environments from a relative improvement perspective. These results underscore
mmMUSE’s robustness and high adaptability to multi-speaker scenarios.

5 REAL-WORLD APPLICATIONS

5.1 Preliminary Evaluation

5.1.1 Multi-position Evaluation. When users hold a device or interact with a fixed one, the device is often not
directly aligned with the vocal cord region. Although Section 4.3.2 explores various user-device angles and
distances, the FOV of a One-TX and One-RX radar remains limited. Therefore, we further evaluate common
device placement configurations during real-world usage under -5 dB SNR, as illustrated in Fig. 29, covering a
horizontal FOV of 80° and a vertical FOV of 40°. As shown in Fig. 30, across 12 different positions, mmMUSE
maintains an average SISDR of 12.93 dB, STOI of 0.86, and PESQ of 1.81. At position 12, where the radar’s
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Fig. 31. Experimental setup for different types of natural user motions.
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Fig. 32. System performance under different natural user motions.

horizontal angle of arrival (AOA) reaches approximately 40°, mmMUSE’s radar approaches its sensing limit,
resulting in the lowest observed performance.

5.1.2  Multi-motion Evaluation. In Section 4.3.3, we evaluated the impact of different user-device motion veloci-
ties on the performance of mmMUSE. Considering the diversity of user movements during real-world device
interaction, we further assess how various natural user motions affect system performance. As shown in Fig. 31,
the motion types include typing, writing, drinking, and walking. These actions are performed naturally and
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involve not only torso movement but also head motions, facial expressions, and limb activity, all under -5 dB SNR.
As shown in Fig. 32, the SISDR during typing and writing is slightly lower, likely due to inevitable radar occlusion
caused by head tilting. In addition, when the radar is hand-held, substantial swinging can cause the sensing
region to shift away from the vocal cord area, thereby degrading enhancement performance. However, across all
four natural motion types, mmMUSE still maintains an SISDR above 12.0 dB, achieving improvements of 0.12 in
STOI and 0.70 in PESQ compared to the average noisy input scores of 0.74 and 1.09, respectively. Furthermore,
relative to the baseline without motion interference removal, mmMUSE yields an average gain of 2.5 dB. These
results further demonstrate the robustness of mmMUSE against common body movements.

5.2 Deployment Feasibility

Through the above experimental analysis, we evaluated mmMUSE’s performance with respect to sensing range,
angular coverage, relative motion, and clothing occlusion. The results are as follows:

¢ Sensing range. Due to power limitations, mmMUSE achieves a range coverage of 3.0 m, with mmWave failing
beyond approximately 1.5 m.

e Angular coverage. The SISO radar effectively enhances speech within an azimuth range of -60° to +60° and an
elevation range of -60° to +15°, supported by a horizontal FOV of 80° and a vertical FOV of 40°.

¢ Relative motion. mmMUSE remains robust to natural user-device relative motion, maintaining stable perfor-
mance across velocities from 0.2 to 1.0 m/s.

¢ Clothing occlusion. Leveraging the penetrability of mmWave, mmMUSE is resilient to everyday clothing
occlusion, operating reliably through fabric up to 2.0 cm thick.

Within the sensing coverage described above, mmWave sensing in mmMUSE effectively enhances speech and
consistently outperforms audio-based models. Beyond this coverage, mmMUSE remains capable of leveraging
audio alone to achieve performance comparable to the state-of-the-art audio-based models. Therefore, the
mmWave—audio fusion design of mmMUSE proves both practical and effective in a variety of open-field scenarios.

Mobile Devices. One primary scenario is mobile devices such as smartphones and smartwatches. For example,
users may engage in video calls on smartphones or voice interactions on smartwatches integrated with mmMUSE.
In noisy environments (e.g., subways, shopping malls, or busy streets), conventional microphones are easily
overwhelmed by background noise, and speech quality deteriorates further when users wear masks. mmWave
can sense vocal vibrations and effectively penetrate obstructions such as face masks. At typical user—device
distances (< 0.5 m) with approximately +30° of angular variation, it provides a reliable complementary cue that
enhances call clarity and speech recognition accuracy.
Fixed Devices. A second scenario involves fixed devices, notably in-car assistants. A radar mounted on the
dashboard or display (usually within 1 m of the speaker) remains robust to engine, wind, and cabin reverberation
noise that degrades purely audio-based methods. Alternatively, during meetings in conference rooms, the radar
can be integrated into fixed microphone devices. It is worth noting that at longer deployment distances (> 1.5 m)
and extreme angles (60° or more), the radar becomes less effective in capturing vocal vibrations due to power
constraints. However, the fusion of audio allows mmMUSE to maintain enhancement performance comparable to
advanced audio-based baselines.

As detailed below, we conduct real-world evaluations in public spaces and vehicle cabins, confirming consistent
speech enhancement across these settings.

5.3 Real-World Evaluation

Speech recognition is extensively used in IoT applications, from smartphone interactions to driver-vehicle
voice communications. These applications process speech using automatic speech recognition (ASR) models to

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 218. Publication date: December 2025.



mmMUSE: An mmWave-based Speech Enhancement System « 218:25

®
S

=& Enhanced speech —&- IML _A [0 Enhanced speech —4 - 1ML \?60 7] Enhanced speech
—~60 == Noisy speech /‘/ 8 __ 60 Noisy speech s S 71 Noisy speech
N Improvement Ve ': @ ’: o 40
< L _a s & 7] EE
Ao AT T | O 40 \ oz
= % 35% 35, 35% 3867 3% . taT. & r | e o
B 30% 2% W7 30% 30% 4 51 | 7/ ‘h SR suburban roads urban roads
20 2 < By | .. B <EM i i
Ll 0 ‘ e = ol BN > T 0064 *—\f,‘\h/\\/
e gt O | | P 0.05 /
0 . = I e
12 3 4 5_ 6 7 8 9 10 piazza ~ mall pedestrian roadside park > 0 10 ZUD' 30 . 40 0 60
(b) Veloclty (m/ S) (b) street (b) istance (km)
Fig. 33. Running performance. Fig. 34. Public-area performance. Fig. 35. In-vehicle performance.

transcribe it into text. In this study, we evaluate the enhanced speech with the ASR tool Whisper [72], using word
error rate (WER) to gauge enhancement effectiveness. Notably, the Whisper model is pre-trained and was not
specifically trained on our dataset. Firstly, we evaluate mmMUSE in real-world scenarios involving participants
running on a treadmill and walking in noisy public spaces. Additionally, we explore mmMUSE’s performance in
driving, which involves fine-grained vibration and dynamic noises on different roads. We demonstrate motion
extent using the standard deviation of acceleration data recorded by the Inertial Measurement Unit (IMU).

5.3.1 Running with Handheld Device. To test mmMUSE’s resilience to motion in real-world scenarios, participants
exercise on a treadmill at speeds ranging from 1 km/h to 10 km/h, with the experimental scene shown in Fig. 33(a).
Fig. 33(b) shows that as the movement speed increases, there is a slight decline in mmMUSE’s performance. This is
because an increase in speed results in greater body movement, as indicated by a rise in the acceleration standard
deviation (Acc. SD). However, enhanced speech still maintains a WER below 10%, representing improvements of
over 30% compared to noisy speech. This substantiates mmMUSE’s adaptability to common movements.

5.3.2  Public Spaces. We evaluate mmMUSE in real-world environments across five settings: piazzas, malls,
pedestrian streets, roadsides, and parks. Participants freely speak while walking through these scenarios, as
illustrated in Fig. 34(a). Fig. 34(b) shows that average WER improvements in the five scenarios are 30.47%,
43.57%, 25.42%, 18.06%, and 23.05%, respectively. mmMUSE effectively enhances speech in various real-world
noisy environments, with the improvement more pronounced as the level of ambient noise increases. Even with
considerable scene differences, there are only slight variations in speech recognition accuracy for the enhanced
speech, demonstrating the universality of mmMUSE across diverse real-world scenarios.

5.3.3 In-Vehicle. To assess mmMUSE’s performance in enclosed environments with fine-grained vibration and
varying noise levels, we conduct an in-vehicle experiment. Participants freely speak while driving, with the
mmWave radar and microphone placed on the dashboard, as illustrated in Fig. 35(a). The vehicle travels roughly
60 km through parkways, tunnels, freeways, overpass bridges, and noisy urban areas, reaching a maximum speed
of approximately 70 km/h. These scenarios featured varying degrees of motion and noise due to different speeds
and road types shown as Acc. SD. As shown in Fig. 35(b), urban roads feature higher noise levels compared to
suburban roads, resulting in a higher WER. Nevertheless, compared to noisy speech, the results from both roads
show improvements of 13.41% and 33.13%, respectively, demonstrating mmMUSE’s effective noise separation
capabilities under varying noise conditions.
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6 EVALUATION OF COMPUTATIONAL REQUIREMENTS

Model Parameters. As shown in Table 3, mmMUSE is lightweight, with approximately 2.1 M parameters.
Compared to audio-based models such as MP-SENet, PHASEN, and Resemble Enhance, mmMUSE has fewer
parameters. This is partly due to the complementary role of mmWave signals in enhancing speech, enabling
mmMUSE to achieve better performance with fewer parameters. Compared to cross-modal models like UltraSpeech,
UltraSE, and RADIOSES, mmMUSE also has fewer parameters, highlighting the efficiency of our two-stage
speech enhancement network. With the increasing computational power and memory capacity of modern smart
devices [98], models with millions of parameters have become widely applicable.

Time Consumption. We perform latency tests on mmMUSE, including preprocessing (motion interference
removal and VAD) time and model inference time. The preprocessing phase of mmMUSE is tested on two different
hardware setups. One setup, released in 2019, features an Intel(R) Core(TM) i7-9750H CPU [12], and the other,
released in 2024, uses an AMD Ryzen Al 9 HX 370 [2]. Our preprocessing stage can handle streaming data using
time windows, thus we only need to test the latency within a single time window, empirically set to the duration of
600 chirps (60 ms). We run 100 iterations of mmWave and audio signals within the time window on each hardware
setup, yielding latencies of 3.51 ms (+ 0.51 ms) and 2.12 ms (+ 0.41 ms), respectively. Additionally, we deploy the
mmMUSE model on a GPU (NVIDIA GeForce RTX 3090) to test inference time on 3.6 s mmWave—-audio pairs. As
shown in Table 3, the inference time of mmMUSE is comparable to that of both audio-based and cross-modal
models, with a latency of 43.72 ms (+ 0.26 ms). We further evaluate the inference latency of mmMUSE on the Intel
17-9750H CPU and the AMD Ryzen Al 9 HX 370, obtaining results of 1.05 s and 0.53 s, respectively. Notably, recent
edge Al chips (e.g., NVIDIA Jetson AGX Orin, Google Coral) have demonstrated superior inference performance
compared to traditional desktop processors [25, 62]. Therefore, mmMUSE is suitable for on-device deployment
while meeting real-time requirements, with latency remaining below the duration of input data clips.

7 RELATED WORK
7.1 mmWave-based Sensing

In recent years, the development of mmWave radar has made it possible to sense environment [33, 57, 70, 96]
and human [88, 94, 95]. Yang et al. [96] proposed a non-intrusive approach for multi-point vibration monitoring
using mmWave radar. The mmWave technology is also utilized for place recognition [57], vehicle detection [33],
and imaging [70]. Moreover, mmWave radar supports various human perceptions, such as gait recognition [88],
face authentication [94], and pose estimation [95].

Table 3. Parameters and time consumption.

‘ Parameter ‘ Inference ‘ Input Modality?
MP-SENet [53] 22M 98.59 ms (+ 0.18 ms) A
PHASEN [97] 7.7 M 19.40 ms (£ 0.44 ms) A
Resemble Enhance [74] 10.6M 67.56 ms (+ 3.29 ms) A
UltraSpeech [15] 49 M / A+U
UltraSE [79] 18.6 M / A+U
RADIOSES [65] 21M! 21.67 ms (+ 0.83 ms) A+M
mmMUSE 21M 43.72 ms (+ 0.26 ms) A+M

! The number of parameters in the RADIOSES model that we reproduced is 4.0 M.
2 The abbreviations are as follows: A represents audio, U represents ultrasound, and M
represents mmWave.
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Despite significant progress in mmWave sensing, its application in fine-grained perception remains fundamen-
tally limited by the requirement for stable conditions. For tasks such as respiration and heartbeat detection [10],
motion interference can cause mmWave sensing failure. A recent study [99] proposed using static objects, such
as walls in the surrounding environment, as references to mitigate device motion. While effective, this method is
only applicable to periodic target motion and cannot handle body motion, as the reflected signals from static
objects lack body movement information. Additionally, Chang et al. [11] proposed using reflected signals from
non-target areas to counteract motion interference, adapting to non-periodic motion. However, this approach is
limited by the need for similar motion patterns in both target and non-target areas, risking failure. Both methods
also require Multi-Input Multi-Output (MIMO) mmWave radar, which increases cost and latency. Our approach
does not require external references. Instead, it utilizes the prominent Doppler shifts in reflected signals to
compensate for user-device motion, enabling the use of SISO mmWave radar.

7.2 Audio-based Speech Enhancement

Traditional statistical methods [45, 92] rely on prior noise knowledge, limiting effectiveness, while microphone
array techniques [51, 82] isolate noises using spatial information but introduce distortions and have spatial
constraints. Recently, learning-based speech enhancement methods have demonstrated improved performance.
Applications of deep learning in speech enhancement can be broadly categorized into time-domain and T-F
domain approaches. Time-domain methods [54, 68, 69] map noisy speech to clean speech using encoder-decoder
architectures but lack frequency-domain details. In contrast, T-F domain methods [38, 55] estimate T-F masks
from spectrograms, effectively integrating both temporal and spectral information for superior performance.
Moreover, MP-SENet [53] and PHASEN [97] use dual-stream networks to process both amplitude and phase
for speech enhancement. Compared to time-domain methods, T-F domain approaches are more sensitive to
SNR variations and can achieve better performance, even with limited datasets [100]. In our work, we employ a
complex-valued network to generate T-F masks capturing both phase and amplitude components of speech.

7.3 Cross-modal Voice Perception

With the development of multimodal fusion, modalities such as vision, ultrasound, and mmWave are increasingly
being utilized for speech enhancement due to their immunity to acoustic noise. Additionally, some studies [17, 30]
have used in-ear acoustic signals, which are less sensitive to environmental noise, as complementary inputs to
out-ear microphones for speech enhancement. Additionally, accelerometers have been used to capture bone-
conducted vibration signals that are immune to acoustic noise for speech enhancement [35, 81]. However, these
methods require contact-based devices (e.g., headphones), which impose additional burdens on users and are not
suitable for touchless scenarios.

Vision, like lip movements [23, 78], has been used as a complementary modality to enhance speech. However,
these methods pose privacy concerns and face challenges in synchronizing visual and audio elements. Alternative
modalities, such as ultrasound [15, 79], enhance speech by detecting articulatory gestures, overcoming the
limitations of visual methods. However, they are constrained by spatial and angular limitations, requiring the
user’s mouth to be close to the microphone [15, 79]. Compared to the aforementioned complementary modalities,
mmWave offers a larger detection range and the ability to capture finer-grained sound information. mmWave
radar enables the detection of minute displacements and remote capture of the vocal vibration [93] or other
passive surfaces [50], offering touchless sound recovery. mmWave radar applications extend beyond speech
recognition [52, 102] and enhancement [65] to include speaker recognition [49] and voice activity detection [64],
highlighting its versatility in source identification and noise rejection. Despite their ability to denoise, these
methods have not fully addressed the common issue of motion interference everywhere in everyday life. Compared
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to these methods, mmMUSE eliminates motion interference in the mmWave modality and fuses audio signals to
enhance speech in complex scenarios.

8 DISCUSSION
8.1 Future Applications

Cost-Effective. With advances in mmWave technology, radar costs have gradually decreased. For example, the
ICLEGEND MICRO radar is priced at around $2 [58], the Infineon radar at $12 [42], and the TI radar at $15 [43].
Thus, mmMUSE is theoretically cost-effective.

Low-Power. mmMUSE incorporates a SISO mmWave radar alongside a low-power microphone. The MEMS
microphone commonly used in smartphones consumes only 1.8 mW [63]. The TI IWR6843ISK radar, used in our
implementation, transmits at 12 dBm (around 16 mW), with radar parameters configured to a 7.3% duty cycle
(around 1.2 mW). Additionally, we also use the Infineon BGT60TR13C radar, which consumes less than 5 mW.

Integration Trends. Miniature mmWave radars are increasingly integrated into smart mobile devices for
interaction [24, 31, 32] and communication [77]. Smartphones, such as Pixel 4 [24], already integrate mmWave
radar for human—machine interaction [73], suitable for mobile power and size constraints. In addition, portable
interactive devices such as PieX Pendant [32] and AIBI Pocket Pet [31] have adopted low-power radars integrated
with edge AI chips. mmWave radar has also been deployed in vehicle cabins for vital sign monitoring [6] and
user interaction [61]. These examples reflect a broader industry trend toward integrating radar sensors with edge
Al processors for cost-effective, low-power, and on-device deployment. With this growing convergence of radar
sensing and edge intelligence, we believe mmMUSE is well-aligned with such hardware developments and can be
feasibly deployed in future consumer-grade platforms.

8.2 Limitations

Sensing Coverage. In Section 5.2, we summarize the sensing coverage of mmMUSE, demonstrating its suitability
for typical handheld and fixed device scenarios. However, when the user is at an extreme distance from the radar (>
1.5 m), outside the FOV, or at a relative angle exceeding 60°, mmWave sensing fails to fully capture vocal vibrations.
In addition, when the relative velocity exceeds around 2.0 m/s, substantial signal discontinuities arise during
the mmWave tracking process, resulting in spectral leakage and incomplete capture of vocal vibration patterns.
Moreover, when the vocal cord region is obstructed by metallic materials, other body parts, or clothing thicker
than 6.0 cm, mmWave signals fail to penetrate, rendering vocal vibration sensing infeasible. Although beyond
this coverage range, mmMUSE remains capable of leveraging audio alone to achieve performance comparable to
the state-of-the-art audio-based methods.

Multi-user Speech Separation. mmMUSE is currently designed to focus on a single target user and has
demonstrated effectiveness in multi-speaker scenarios, as shown in Section 4.3.5 and Section 5.3.2. Since SISO
mmWave radar lacks angular resolution, speech separation is only feasible when speakers occupy distinct range
bins. In extreme cases where a nearby speaker is positioned so close to the target user that their radial distance to
the radar falls within the resolution (around 4.2 cm), the system may fail to separate their vocal signals. This issue
is further exacerbated by natural body movement, which can effectively reduce spatial separability. To address
this limitation, we plan to incorporate Multi-Input Multi-Output (MIMO) mmWave radar in future work, which
would enable the distinction of different users based on angular resolution. Therefore, multiple users can share the
device, as their respective vocal vibration signals can be distinguished and individually enhanced. Additionally,
the network architecture of mmMUSE can be extended or parallelized to process multiple differentiated mmWave
inputs, enabling speech separation in more complex scenarios.
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9 CONCLUSION

We have proposed mmMUSE, an mmWave-based motion-resilient universal speech enhancement system. It
eliminates motion interference in the mmWave modality and fuses audio signals to enhance speeches. Using
datasets from 46 participants, mmMUSE outperforms the state-of-the-art speech enhancement models by 26% in
SISDR and 34% in STOI on average. It also achieves SISDR improvements of 16.72 dB, 17.93 dB, 14.93 dB, and
18.95 dB in controlled environments involving intense noise, extensive motion, multiple speakers, and various
obstructive materials, respectively. Moreover, in real-world scenarios, including running, public spaces, and
driving, mmMUSE achieves WER below 10%.
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