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Abstract— Thorough understanding of human movement is
necessary to further robotics research fields such as imitation
learning and human-robot interaction. Currently available
datasets have measured the visual and proprioceptive aspect
of human-object interaction, but have not yet captured tactile
information throughout human-object tasks. We present a novel
human grasping dataset that inclues vision, motion capture,
tactile, and audio measurement to provide information for all
of the senses humans use to interact with objects.

I. INTRODUCTION

Robotic grasping and manipulation can be improved using
insight from human hand-object interactions. Human ability
to grasp objects and handle their wide range of complexity
is informed by multiple senses: vision, tactile, hearing, and
proprioception (the sense of one’s body in space). The use
of visual and motion capture is common-place in robotic
grasping research, collection of tactile and audio data in
a synchronized fashion is lacking. Several studies have
shown the capabilities of using tactile sensors to inform
the robot during a manipulation task [1]-[3]. Most of these
tactile studies are data-driven using data collected from the
tactile sensors on the robot. Tactile information from human
grasping techniques can be used to inform robotic tactile
studies.

Previous human grasping datasets have included vision
and motion capture to analyze human movement. Brahmbhatt
et al. [4] used RGB-D and thermal images to identify where
on objects grasps have occurred. A couple of studies identify
hand pose using image processing [5] and a fiber-optic wear-
able [6]. While those studies lack access to hand dynamics
and forces during object manipulation, other studies focus
solely on tactile information [7]. What is unique about our
human grasping dataset is that (1) it combines tactile and
audio with vision and motion capture to synchronize the data,
and (2) it provides all of this information during human hand
manipulation of objects.

We present a new human grasping dataset which contains
four data streams: RGB-D, motion capture, tactile, and audio.
The insight gained from this dataset can inform predictive
algorithms for human-robotic interaction. By knowing how,
where, and to what extent a human is likely to grasp an
object, a robot can assist a human in lifting objects without
the delay between a human’s verbal command and a robot’s
planned trajectory and grip force.

*This work was supported by Samsung Research America
L All Researchers are affiliated with Samsung Artificial Intelligence Cen-
ter in New York saicny@samsung.com

Fig. 1. Data collection setup. The subject is wearing a pressure sensing
glove clad with reflective markers for vicon motion capture. The object,
Cheez-it box on the table, also has reflective markers. An RGBD camera is
attached to the table for video capture.

II. MULTI-MODAL DATASET

This dataset includes two novel datastreams, tactile and
audio signals during human grasping. In total this dataset
includes four datastreams: RGB-D videos, motion capture,
tactile signals, and audio signals. The synchronicity of these
datastreams provides an opportunity to glean more informa-
tion from the data, and potentially, train robots to interact
with the world using the same senses as humans.

Hand pressure is collected via a Tekscan glove clad with
tactile sensor arrays to gather pressure changes across the
fingers. A vicon motion capture system setup is used to
gather palm and finger location. Vicon reflective markers
are attached to the finger joints and the palm to collect
the human’s hand movement throughout each trial. Each
participant stands 6 inches in front of a 2.5 ft tall table.
Three vicon markers are placed on each object to track its
movement through space. The realsense camera is attached to
the table to capture the human’s point of view. Audio signals
are gathered from a microphone placed on the subject’s wrist.

One trial consists of a pick and place task, where the
participant reaches, grabs the object, and either moves it
laterally (fig. 2). The objects chosen for these tasks were
selected from the YCB dataset [8], where their corresponding
3D models are used with the pressure profile and motion
capture to identify hand contact locations.



Grip Force (N)
o w &

£ 100 "
2.0 ¥ 4 |
-100
5 00 05 10 15 20 25 30 35 4.0
Time (s)
@ L.
g SS—
——
£ ——
2 =
s 025
s 020
B 015 Z
F 0.10
o 0.05
g
S

RGB Frames

T\

Grasp Carry Place

Fig. 2. Example of each datastream for one pick and place trial. Grip force
and raw audio are shown here as time series signals. The vicon coordinate
frame shows the hand trajectory towards the object and through the task.
The black lines connected to points represent the fingers before and after
the carry period.
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Plastic Cup Foam Brick Mustard Bottle Cracker Box
Mass (g) 28 28 603 411
Dimensions (mm) 85x72 50 x 75 x 50 58 x 95 x 190 60 x 158 x 210
Max Grip Force (N) 193 0.59 2.92 3.15
Rate of Release (N/s) -3.03 -158 -3.88 -2.35

Fig. 3. Grip force variation across objects. a) The average grip force across
trials. b) The calculated maximum grip force and rate of object release varies
between the different objects.

III. MULTI-MODAL ANALYSIS

The following sections will include example analyses that
can be made by combining tactile with vision and motion
capture.

A. Grip Force

Humans vary their grip force depending on the object,
as seen in fig. 3. There is a possible correlation between
expected object properties and grip force that can be analyzed
with this dataset and applied to grasping objects of various
textures, geometries, and weights. Preliminary analysis of the
tactile data shows a difference in average maximum pressure
applied per object (fig. 3a) and in the release rate between
the four objects, quantified in fig. 3b. Because our dataset
includes tactile data throughout the entire task, conclusions

Fig. 4. Trajectory variation across grasp trials for the same object. a) Each
colored line represents the hand’s trajectory towards the object in one trial
marked with intermittent hand poses. b) Contact locations on the uv map
of the mustard bottle.

can be drawn about object carry and placement alongside
object grasp.

B. Contact Analysis

With tactile data the time of contact in the grasp sequence
can be calculated without human annotation. Pressure sensed
by the Tekscan glove is zero during the trajectory towards the
object, so the initial pressure increase signifies the contact
instance. This information combined with the hand and
object location, collected via motion capture, provides the
finger-object contact location. (fig. 4b).

C. Human Hand Pose and Trajectory

Hand trajectories are included in this dataset to inform
trajectory planning for robots. Trajectory information regard-
ing the object can be extracted from our dataset in the same
manner. To analyze hand-object interaction, the YCB object
model is transformed into the vicon coordinate frame. The
vicon software provides palm pose for each time step, which
is used to calculate the hand trajectory. In fig. 4a trajectories
of multiple trials are shown for grasping the mustard bottle.
Hand pose is uniformly sampled along these trajectories,
showing the hand’s decrease in speed as it approaches the
target. This can give insight to robotic control design.

IV. FUTURE PLANS

To complete this dataset we are in the process of including
more objects and participants. It is important to select a wide
array of participants for a human dataset. Variance in height
and age may affect approach trajectory to objects. Robustness
in the sample population needs to account for as many of
these variations as possible.

Currently, analysis of the audio signal is underway. The
audio signal may measure noise in hand-object interaction,
such as grasp time or slipping. Previous work [9] has shown
the ability to detect collision with a robot arm using audio
signals. This can be expanded to object placement detection
using a microphone found on the wrist.

While the first wave of data has focused primarily on a
simple pick and place task, future work will include more
variety such as, placing objects above or below the original
surface or picking an object out of clutter. This variety in data
collection is necessary to inform robot trajectory and grasp
planning for functional tasks like organizing or cooking.
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