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A NEW DESIGN  
PARADIGM FOR ENABLING 
SMART HEADPHONES
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 Headphones continue to grow more intelligent as new functions (e.g., touch-based gesture control) appear. 
These functions usually rely on auxiliary sensors (e.g., accelerometer and gyroscope) that are available 
in smart headphones. However, for those headphones that do not have such sensors, supporting these 
functions becomes a daunting task. This paper presents HeadFi, a new design paradigm for bringing 

intelligence to all headphones. Instead of adding auxiliary sensors into headphones, HeadFi turns the pair 
of drivers that are readily available inside all headphones into a versatile sensor to enable new applications, 
spanning across mobile health, user-interface, and context-awareness. HeadFi works as a plug-in peripheral 
connecting the headphones and the pairing device (e.g., a smartphone). The simplicity (can be as simple as 
just two resistors) and small form factor of this design lend itself to be embedded into the pairing device as 
an integrated circuit. We envision that HeadFi can serve as a vital supplementary solution to existing smart 
headphone design by directly transforming large amounts of existing “dumb” headphones into intelligent ones. 
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however, the excitation signals are weak  
and can easily be buried in the audio input 
signal that is orders of magnitude stronger. 
From the usability point of view, our design 
should not break the appearance and the 
internal structure of the headphones. Besides, 
as the headphones are usually driven by 
mobile devices, our design should also be  
low power, incurring zero or negligible 
power consumption.

To address these challenges, we are 
inspired by a null measurement circuit 
design—Wheatstone bridge. Originally 
Wheatstone bridge was used to measure an 
unknown resistance by balancing the two 
arms of the bridge. In HeadFi, we repurpose 
the Wheatstone bridge to cancel the strong 
interference of the audio input signals to 
measure the subtle variations in voltage 
caused by excitation signals. Specifically, the 
left and right two drivers of the headphones 
are connected to the two arms of the bridge 
using the headphones’ stereo jacket. Once 
the bridge is balanced, its output voltage 
does not change with the variation of the 
audio input signal. On the other hand, the 
output voltage of this bridge still varies with 
the pressure change around the headphones, 
which is affected by the excitation signals 
such as the hand touch and the physiological 
activities. We prototype HeadFi on PCB, 
demonstrate four applications (Figure 1), 
and conduct extensive experiments with 
53 volunteers using 54 pairs of non-smart 
headphones under the institutional review 

board (IRB) protocols. The results show that 
HeadFi can achieve 97.2%–99.5% accuracy 
on user identification, 96.8%–99.2% accuracy  
on heart rate monitoring, and 97.7%–99.3% 
accuracy on gesture recognition. 

TRANSFORMING HEADPHONES 
INTO SENSORS 
HeadFi employs the pair of drivers inside 
headphones as versatile sensors to realize 
the functionalities mentioned above. In 
essence, speakers and microphones are 
reciprocal in principle [1]. For headphones 
without a built-in microphone, an intuitive 
solution would be turning the speaker2 into 
a microphone to capture these excitation 
signals. However, this solution does not work 
in our case due to the following two reasons. 
First, the sensitivity of speaker-converted 
microphone is inferior to purposely built 
microphones as diaphragms in headphones 
are well-calibrated for playing sound as 
opposed to sound recording [14]. Second, 
the excitation signals are feeble and will be 
buried in the music signal that is orders of 
magnitude higher. In HeadFi design, the 
key observation is that headphones usually 
come in a pair of matched driver. Based 
on this observation, we build a differential 
measurement circuit that enables the head- 
phones to reject the playing music signal but 
keep the sensing capability at the same time.

Null Measurement 
We leverage a passive, null measurement 
circuit—Wheatstone bridge, to detect the 
minute variation of Eheadphones. 

Wheatstone bridge primer. A Wheatstone 
bridge consists of two voltage divider arms, 
each consisting of two simple resistors 
connecting the power source and ground 
terminal. Originally this bridge was used 
to measure an unknown resistance (as 
small as several milli-Ohms) by tuning 
the trimpot until the two arms reach to a 
balanced state (i.e., the output voltage is 
zero) [8]. As shown in Figure 2, R1 and R2 
are two identical bridge arm resistors. Cx 
is the unknown load and C1 is the trimpot. 

FIGURE 1. Mobile applications enabled by HeadFi. (a) voice communication on headphones 
without a microphone (b) identifying different users and switch the context (c) touch-based 
gesture control (d) physiological activity monitoring. 

(a) Voice 
  communication

(c) Gesture control(b) User identification (d) Heart rate  
 monitoring 1 We use headphones to represent in-ear, supra-

aural (a.k.a., on-ear) and circumaural (a.k.a., over-ear) 
listening devices throughout the paper. 
2 The driver is the key component of a speaker in 
headphones and, therefore, driver and speaker  
are used interchangeably throughout the paper.

Headphones1 are among the most popular 
wearable devices worldwide, and are fore- 
cast to maintain the leading position in the 
coming years [4]. Existing smart head- 
phones all build upon advanced hardware 
components (mostly embedded sensors). 
However, statistics show that more than 
99% of consumer headphones shipped 
in 2019 are not equipped with embedded 
sensors, and more than 43% of consumer 
headphones even lack a microphone [3, 12].  
Thus, consumers must purchase a new 
pair of smart headphones with embedded 
sensors to enjoy the sensing features. 

In this paper, we ask the following 
question: Can we turn these non-smart 
headphones in hand into intelligent ones 
without redesigning the headphone or 
adding embedded sensors? A positive answer 
would enable the consumers to enjoy smart 
features on their “dumb” headphones at a 
minimal cost. More importantly, it would 
also pave the way for realizing earable 
intelligence at an unprecedented scale by 
transforming the large amount of existing 
non-smart headphones into intelligent ones. 
To realize this high-level idea, we need to 
address both technical and implementation 
challenges. From the technical point of 
view, the primary challenge comes from 
measuring the minute variation in voltage 
induced by the pressure change. The voltage 
measurement on the headphones is deter- 
mined by both the audio input signal (e.g., 
music) and the excitation signal. In practice, 
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The trimpot C1 is tuned until its impedance 
equals to the impedance of Cx , leading to a 
“balanced” bridge. In such a balanced state, 
the voltages on these two loads are the same, 
resulting in a zero voltage output (Vg = 0). 
Any minute change in the impedance of 
Cx would alter the voltage on this load and 
break the balance of the bridge, resulting in 
a non-zero voltage output (i.e., Vg ≠ 0).

Detecting minute voltage with the bridge. 
In HeadFi, we repurpose the Wheatstone 
bridge to cancel the strong audio input 
signals and measure the subtle changes 
in headphone impedance3 caused by 
excitation signals. We replace the unknown 
load Cx in the bridge with the driver of the 
headphones. The audio input (e.g., music 
signal) serves as the voltage supply Vin to 
this bridge. Once the bridge is balanced, 
the voltage output Vg becomes zero. The 
variation in audio input signal Vin does not 
break the bridge’s balance. However, the 
excitation signals caused by human gestures 
and physiological activities inherently break 
the balance of the bridge and alter the voltage 
measured (Eheadphones). More importantly, 
the Wheatstone bridge is super sensitive to 
the voltage variation at the headphones. Thus, 
we can leverage the variation in the voltage 
output of this bridge Vg to detect even very 
subtle excitation signals. 

Balancing the Wheatstone bridge. To 
measure the minute change in Eheadphones, 
it is important to balance the Wheatstone 
bridge first. The audio input signal is a 
wideband AC signal varying over the 
entire audible band from 20 Hz to 20 kHz. 

To balance the bridge over this audible 
band, the trimpot C1 should be tuned to 
match Cx —the load of headphones’ driver. 
Accordingly, C1 should be an RLC type of 
circuit to match the driver’s load. However, 
in practice, this balancing mechanism is 
not scalable since different headphones have 
dramatically different driver impedance values. 

We instead leverage the symmetry  
nature of the drivers to solve this problem. 
The drivers of headphones come in a pair  
(i.e., in both left side and right side of the  
headphones). To ensure a good user experi- 
ence, each pair of drivers undergo a fine-
grained calibration during manufacturing 
to ensure the impedance of the two drivers 
are exactly the same. Based on this intuition, 
HeadFi replaces the trimpot C1 with the 
second driver in the headphones, which 
naturally balances the bridge without 
introducing any complex tuning circuits. As 
shown in Figure 3, we experimentally tested 
the driver symmetry nature by conducting 
many of our demonstration applications on 
54 pairs of different “dumb” headphones with 
the cost ranging from $2.99 to $15,000.

Physical interpretation of Vg . The pair 
of drivers in headphones are wired to be 
in-phase for coherent stereo AC signal. 
Note that when Cx and C1 are replaced by 
the two drivers, the voltage measured at the 
left driver Eleft and the right driver Eright 

coming to the bridge are phase inverted. That 
is to say, the voltage output Vg of the bridge 
characterizes the difference of Eleft and 
Eright: Vg = Eleft −Eright. In some applications 
(e.g., heartbeat, and breathing monitoring), 
the excitation signal is picked up by both 
drivers in the headphones. Hence, a critical 
question is whether the voltage variation 
caused by the excitation signals is canceled 
by the bridge without being detected, i.e.,  
Vg = 0. In practice, the excitation signals 
arrive at these two drivers usually through 
different paths. Hence, Eleft ≠ Eright. HeadFi 
can therefore still leverage this differential 
voltage measurement to detect the minute 
excitation signals.

USER IDENTIFICATION 
We first demonstrate how HeadFi can be 
used for user identification. The mainstream 
identification method, face recognition, does 
not work well in poor lighting conditions 
or when the user wears a mark. HeadFi can 
be leveraged to check the user identity and 
unlock the phone (pairing device) regardless 
of the lighting conditions. Face recognition 
also raises privacy concerns, whereas HeadFi 
can identify users without taking photos.

Signal Processing 
Ideally, an identification service should be 
non-intrusive, i.e., it should be triggered 
automatically as long as the user puts 

FIGURE 2. Wheatstone bridge. 

FIGURE 3. Part of the headphones used in our experiments. 

3The voltage change is linearly related to the 
headphone impedance change.
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on the headphones. As such, our design 
should be able to i) detect if the user puts 
on the headphones and ii) identify the user 
automatically. 

Headphones ON-OFF detection. Our 
design is inspired by the seashell resonance 
effect [9]: when a seashell is clasped to the 
ear, the ambient acoustic noise will resonate 
within the cavity of the seashell and certain 
frequency noise will get amplified. One 
can thus hear ocean-tide-like sounds from 
the seashell. Similarly, once the user puts 
on her headphones, the headphones, ear 
canal, and eardrum establish a resonance 
chamber, amplifying the ambient acoustic 
noise. This amplified noise leads to a 
higher voltage signal output measured at 
HeadFi. Based on this observation, we use 
the RSS and its standard deviation (σ) for 
ON-OFF detection. These two values jump 
dramatically when the user puts on the 
headphones. 

Identification. Since the headphones can 
now transmit and receive at the same time, 
we can proactively probe the ear channel 
response using the headphones. Specifically, 
the smartphone sends a chirp signal through 
the headphones to profile the user’s inner ear 
structure. The two drivers of the headphones 
receive echo signals that characterize the ear 
canal’s channel response. 

As HeadFi measures the voltage 
difference between the two drivers of 
headphones, one may wonder whether the 
channel response from the left ear cancels 
out that from the right ear. Interestingly, the 
ear-related physiological uniqueness exists 
not just between two users, but also between 
two ears of the same person [10, 11]. Hence 
the channel response measured at two ears 
would not be the same. Figure 4 shows 
the channel response measured by HeadFi 
on three different persons. We can see the 
channel responses are dramatically different 
in frequency bands higher than 3 kHz. This 

is because the physiological differences 
between human ears are in the scale of sub-
centimeter level, which can be picked up by 
signals with a wavelength of sub-centimeter 
(≥ 3 kHz). We further adopt a preamplifier 
(INA126) to control the output level. As a 
result, HeadFi can retrieve a clear echo even 
though the excitation signal is weak. 

Proof-of-concept. As a proof-of-concept, 
we use support vector machine (SVM), a 
lightweight classifier for user identification. 
Specifically, we collect multiple copies of the 
user’s echo chirp as positive samples. We 
then collect the same amount of negative 
samples by putting the headphones on the 
E.A.R.S dummy head. Finally, we train a 
binary SVM classifier and perform k-fold.[5] 

Experiment 
The experiments involve 27 participants 
(7 females and 20 males), including one 
pair of identical twins. By default, we use 
the Jays U-JAYS supra-aural headphones 
(MSRP $19.99) as the testing device. The 
chirp duration is one second throughout the 
experiments. The participant is asked to put 
on and then take off the headphones each 
time we record an echo chirp. We record 50 
echo chirps for each of the 25 participants 
and 100 echo chirps for each of the twins.
 
ON-OFF detection. We first evaluate 
the success rate of ON-OFF detection 
across 54 pairs of headphones. We further 
categorize the results into five groups based 
on headphone types and show the results 
in Figure 5. We observe that the success 
rate is consistently high (>97.93%) across 
all five types of headphones. In particular, 
IEM headphones achieve the highest success 
rate (99.8% on average) since this type of 
headphones go deeper into the ear canal 
and, thus, are less affected by noise. 

User Identification. Next, we evaluate 
the performance of user identification. In 
each experiment, we adopt k-fold (k =5) 
cross validation to demonstrate the system 
performance. We adopt precision [6] as 
our evaluation metric. A high precision 
value indicates that only the authorized 
users can successfully pass the verification. 
Figure 6 shows the precision under different 
chirp bandwidth settings. When the chirp 
bandwidth is relatively small (e.g., < 4 kHz),  

[HIGHLIGHTS]

FIGURE 4. Channel response of three people characterized by (a) low-end and 
(b) high-end headphones. 

FIGURE 5. ON-OFF detection cross-validation. FIGURE 6. Precision test.  

(a) iHip Mr Bud ($3.6) (b) Beyerdynamic T1 ($999).
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we observe that the precision grows with 
increasing chirp bandwidth. The precision 
then fluctuates around 95% as we further 
increase the bandwidth to 15 kHz. It then 
drops to around 90% as the frequency band- 
width goes beyond 15 kHz. Such precision 
variation is due to the subtle changes during 
multiple rounds of putting on headphones: 
the sub-mm level changes can be captured 
by the high-frequency (higher than 15 kHz) 
signal, which disturbs the user identification. 
Suggested by this study, we employ a fre- 
quency band from 100 Hz to 10 kHz as the 
default chirp bandwidth. We exclude the 
frequency band below 100 Hz because most 
mechanical movement-induced noise is in 
this frequency range.

PHYSIOLOGICAL SENSING 
Next, we demonstrate the feasibility of 
applying HeadFi to detect subtle physiologi-
cal signals. Vital physiological sign sensing 
plays a key role in human health monitor-
ing. HeadFi can empower users to moni-
tor a variety of key physiological activities 
continuously and accurately (e.g., heartbeat 
rate) using their non-smart headphones.  
In Figure 7, we take heartbeat monitoring  
as an illustrative example.

Signal Processing 
Monitoring heartbeat is challenging due to 
the extremely weak excitation signal induced 
by the subtle blood vessel deformation in  
the ear canal. As shown in Figure 7(a) (top), 

such a minute excitation signal can be 
buried in the noise and interfered by user 
motions. To solve this challenge, we first 
pass the signal output from HeadFi through 
a low-pass filter with a very low cut-off 
frequency (Fc =24Hz) to remove the high-
frequency noise introduced by the echoes 
of audio input signals and environment 
excitations. The result is shown in Figure 7(a)  
(bottom). We then leverage the auto-correla- 
tion function (ACF) to identify the periodicity,  
which corresponds to the heartbeat rate:

x(n)x(n + k). (1)rxx(k) = 1
N–k ∑

N–1–k

n=0

where x(n) is a copy of the signal output 
from HeadFi and k is the lag. N is the length 
of the received signals. Figure 7(b) (top) 
shows an example of the auto-correlation 
output. The location of peak values reflects 
the time period of one heartbeat cycle. Blindly 
enumerating all choice of k in hopes of finding 
the peak is computationally intractable. It may 
also introduce false positives. We thus set the 
upper (U) and lower (L) bounds of k based 

on the possible heartbeat rate of human 
beings (35 – 200 bpm [17]). Our goal can  
be represented by the following function:

k★ = arg max rxx(k).         (2)
 k U |  (L,U)

We then calculate the heartbeat rate using 
the equation RBPM = 60 · Fs

k★  , where Fs is 
the sampling rate. In reality, however, body 
movements may also introduce strong 
excitation signals that can overwhelm  
the minute heartbeat signals, as shown in 
Figure 7(b) (bottom). We thus truncate the 
voltage output from HeadFi into windows 
and calculate RBPM within each window.  
We then apply an outlier detection algorithm  
[15] to filter out those outlier estimations 
and average the remaining to obtain the 
heartbeat rate.

Experiment
In this section, we evaluate the performance 
of heartbeat rate monitoring. Each measure- 
ment lasts for 40 seconds. We truncate a 
recording session using a window size of 
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FIGURE 7. (a) Heartbeat signal becomes clear after filtering (b) ACF is adopted to calculate the heartbeat  
rate (top) and an example of time domain interference caused by body movements (bottom).  

(a) The voltage output before and after filtering (b) The ACF plot and time domain interference

WE ASK THE QUESTION: CAN WE TURN  
NON-SMART HEADPHONES IN HAND  
INTO INTELLIGENT ONES WITHOUT 
REDESIGNING THE HEADPHONE OR  
ADDING EMBEDDED SENSORS? 
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four seconds, with an overlapping of two 
seconds. We measure the heartbeat rate of 
the participant in two conditions: i) with 
audio input signal on (i.e., listening to the 
music during the testing); and ii) with 
audio input signal off. The ground-truth is 
obtained by a CONTEC CMS50D1A pulse 
oximeter [2]. We use error rate (ER) to 
measure the performance of our heartbeat 
monitoring: ER = |RHF –RPO|

RPO
 , where RHF 

and RPO are the heartbeat rate reported by 
HeadFi and the oximeter, respectively. 

Heartbeat rate monitoring accuracy.  
We evaluate the accuracy of the heartbeat 
rate estimation using all 54 pairs of head- 
phones. In particular, we categorize these 
headphones into three groups, namely, 
circumaural headphones (C), supra-aural 
headphones (S), and in-ear model (IEM). 
The result is shown in Figure 8(a). We 
observe that HeadFi achieves consistently 
low error rate across all three groups of 
headphones. Circumaural headphones (C) 
achieve the lowest error rate both in the 
absence (1.37%, C) and presence (1.42%, C-M) 
of audio input signals, followed by supra-
aural headphones (1.40% and 1.68%  
in these two cases, respectively). HeadFi 
achieves the highest error rate for the IEM 
headphones: around 1.64% and 2.42% in the 
absence (IEM) and presence (IEM-M) of 
audio input signals, respectively. While the 
intrinsic reason behind this performance 
drop is unknown, one possible reason could 
be that IEM headphones have less contact 
area with skins and thus receive the weakest 
vibration signals compared to the other two 
types of headphones. The maximum error 
rate achieved by HeadFi is around 3%, which 
still satisfies the requirement (less than 
5%) for commercial heartbeat monitoring 
systems [13]. These results demonstrate the 
feasibility of using HeadFi to measure user’s 
heartbeat rate even in the presence of music. 

Impact of body movement. In this experi- 
ment, 27 participants (including 7 females 
and 20 males between 27 to 55 years old) 
are asked to put on/off the headphones 
occasionally during the testing, which brings 
in a strong interference signal. Figure 8(b) 
shows the error rate. We also show the error 
rate in the absence of body movement for 
comparison. We observe a slight increase 
(0.59% on average) in the error rate in the 

presence of body movements, while the 
overall error rate is still less than 3%, well 
below the requirement for commercial 
heartbeat monitoring systems (< 5%). 

TOUCH-BASED GESTURE 
RECOGNITION 
We next demonstrate the feasibility of trans- 
forming the enclosures of the non-smart 
headphones into virtual touchpads using 
HeadFi. The rationale behind this is that the 
variation in the output voltage Vg caused by 
different gestures manifests unique features  
in both spatial and temporal domains. 

Design intuitions. We invite a volunteer to 
tap the left and right enclosure of one pair 
of headphones and record the RSS out of 
HeadFi. As shown in Figure 9(a), when there 

is a tap on the headphones, we can always 
observe multiple RSS peaks. In particular, 
when the user taps the left enclosure, there is 
a negative peak followed by a positive peak, 
as shown in Figure 9a (top). In contrast, the 
positive peak shows up ahead of the negative 
peak when the user taps the right enclosure 
as shown in Figure 9a (bottom). This is 
because the Wheatstone bridge measures 
the differential voltage between the two 
drivers of headphones. Consequently, the 
excitation signals measured at the bridge are 
phase inverted for right tap and left tap. Note 
that the echoes of input music signal been 
recorded by HeadFi are orders of magnitude 
weaker and would not overwhelm peaks 
introduced by tapping gestures. Similar to 
the tapping gestures, left and right sliding 
can also be easily distinguished based on the 
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FIGURE 9. The voltage output signals Vg caused by different touch-based gestures. (a) tapping the 
left (top) and right (bottom) enclosure (b) sliding on the left (top) and right (bottom) enclosure.

(a) Impact of ambient noise.

(a) Tapping

(b) Impact of body movement. 

(b) Sliding
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same principle. On the other hand, sliding 
gestures usually last longer than tapping in 
time domain, as shown in Figure 9b. We can 
thus leverage the peak interval to distinguish 
them. Please refer to our detailed gesture 
recognition design and evaluation results  
in the HeadFi full paper.[7] 

VOICE COMMUNICATION 
Finally, we demonstrate the feasibility of 
using HeadFi to enable full-duplex voice 
communication on those headphones 
without a built-in microphone. As discussed 
in “Null Measurement,” the human voice 
signals will not be canceled out by the 
bridge since the voice signals propagate to 
left and right headphone drivers through 
two complicated but independent channels 
determined by air, bones, tissue, etc. 

The impact of echoes. One interesting issue 
that may exist with our design is the echo 
(here we assume the user on the other side 
is not using HeadFi for easier explanation). 
This is because during a voice call, HeadFi 
captures the voice from not just the HeadFi 
user side but also the other side at the head- 
phone’s diaphragm. Both captured voices 
will be transmitted to the other side. Thus, 
the other side may hear an echo of her 
own voice. Fortunately, this issue is already 
addressed by the service providers. To 
provide high-quality voice communication, 
service providers usually run sophisticated 
signal cancellation algorithms at the base 
station to remove echoes before transmitting 
the voice signals to the receiver [16]. There- 
fore, echoes would not be a problem and the 
evaluation results also confirm this. Detailed 
evaluation results in voice communication 
are presented in the HeadFi full paper [7]. 

CONCLUSION 
We have presented the design, implementa-
tion, and evaluation of HeadFi, a low-power 
peripheral to bring intelligence to head-
phones. HeadFi employs the pair of drivers 
inside headphones as a versatile sensor to 
enable new functionalities as opposed to 
adding embedded sensors. This design can 
potentially upgrade existing non-smart 
headphones into intelligent ones. We proto-
type HeadFi on PCB board and demonstrate 
the potential of HeadFi by showcasing four 
representative applications using 54 pairs  
of headphones. n
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[HIGHLIGHTS]

Labs, retiring in 2001 as the vice-president of 
wireless research. His current joint projects with 
the Rutgers University include developing a new 
class of wireless nodes for inventory tracking and 
ubiquitous sensor networks.




