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ABSTRACT
Headphones continue to become more intelligent as new functions
(e.g., touch-based gesture control) appear. These functions usually
rely on auxiliary sensors (e.g., accelerometer and gyroscope) that
are available in smart headphones. However, for those headphones
that do not have such sensors, supporting these functions becomes
a daunting task. This paper presents HeadFi, a new design para-
digm for bringing intelligence to headphones. Instead of adding
auxiliary sensors into headphones, HeadFi turns the pair of dri-
vers that are readily available inside all headphones into a versatile
sensor to enable new applications spanning across mobile health,
user-interface, and context-awareness. HeadFi works as a plug-in
peripheral connecting the headphones and the pairing device (e.g., a
smartphone). The simplicity (can be as simple as only two resistors)
and small form factor of this design lend itself to be embedded into
the pairing device as an integrated circuit. We envision HeadFi can
serve as a vital supplementary solution to existing smart headphone
design by directly transforming large amounts of existing “dumb”
headphones into intelligent ones. We prototype HeadFi on PCB and
conduct extensive experiments with 53 volunteers using 54 pairs of
non-smart headphones under the institutional review board (IRB)
protocols. The results show that HeadFi can achieve 97.2%–99.5%
accuracy on user identification, 96.8%–99.2% accuracy on heart rate
monitoring, and 97.7%–99.3% accuracy on gesture recognition.
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• Human-centered computing→Mobile computing; • Hard-
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HeadFi

Figure 1: Illustration of HeadFi prototype. HeadFi works as a plug-
in peripheral that connects a pair of headphones and a smartphone.
It captures the minute voltage change on the headphones’ drivers
and offloads voltage readings to the smartphone for processing.
HeadFi can be miniaturized and further embedded into a smart-
phone as an integrated circuit.

2021, New Orleans, LA, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3447993.3448624

1 INTRODUCTION
Headphones1 are among the most popular wearable devices world-
wide, and are forecast tomaintain the leading position in the coming
years [8]. Recently, there has been a growing trend in bringing in-
telligence to headphones. For instance, Apple Airpods [18] and
Samsung Galaxy Buds [17] put microphones in or near the ear to
enable active noise cancellation and audio personalization. Motion
sensing headphones such as Microsoft surface headphones [14] and
BOSE QC35 headphones [11] leverage embedded sensors to enable
on-ear touch control, allowing users to play or pause audio, and
wake up voice assistant (e.g., Siri, Alexa, and Cortana) through ges-
tures. With miniature inertial sensors, headphones can now even
pick up vital signs for respiration and heart rate monitoring [28].

Existing smart headphones all build upon advanced hardware
components (mostly embedded sensors). However, statistics show
that over 99% of consumer headphones shipped in 2019 are not
equipped with embedded sensors, and over 43% of consumer head-
phones even lack a microphone [7, 48]. Thus, consumers have to
purchase a new pair of smart headphones with embedded sensors
to enjoy the sensing features.

In this paper, we ask the following question: can we turn these
non-smart headphones in hand into intelligent ones without redesign-
ing the headphone or adding embedded sensors? A positive answer
would enable the consumers to enjoy smart features on their “dumb”
headphones at a minimal cost. More importantly, it would also

1We use headphones to represent in-ear ( ), supra-aural (a.k.a., on-ear) and cir-
cumaural (a.k.a., over-ear) ( ) listening devices throughout the paper.
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pave the way for realizing earable intelligence at an unprecedented
scale by transforming the large amount of existing non-smart head-
phones into intelligent ones.

We try to answer this question by presenting the design and
implementation of HeadFi—a low-power and low-cost peripheral
that can be conveniently plugged into a device (such as one’s smart-
phone) to enable a multitude of smart functionalities on non-smart
headphones. Our solution serves as an alternative approach to pro-
viding smart features to headphone users. HeadFi differs from the
existing smart headphone design in the following two key aspects.
Firstly, it uses the headphones, in particular the pair of drivers2 al-
ready inside a headphone, as a versatile sensor as opposed to adding
auxiliary sensors to enable smart features. Secondly, it serves as
a plug-in peripheral, connecting the headphones and the pairing
device (e.g., a smartphone) in a non-intrusive manner.

HeadFi leverages the coupling effect between the headphones
and the surroundings to enable new functionalities. For example,
when a user wears a pair of headphones, the headphones, ear canal,
and eardrum would couple together to form a semi-hermetic space
that is extremely sensitive to pressure changes. A pressure change
can be induced externally by a vibration of the headphones caused
by a gentle touch. Similarly, internal physiological activities such as
heartbeats cause repetitive deformation of blood vessels in the ear
canal, altering the pressure inside the semi-hermetic space. As the
voltage measured at the headphones is affected by these pressure
changes (§2.1), we can thus leverage the voltage variations to detect
the external and subtle internal physiological changes.

To realize this high-level idea, we need to address both technical
and implementation challenges. From the technical point of view,
the primary challenge comes from measuring the minute variation
in voltage induced by the pressure change. The voltage measure-
ment on the headphones is determined by both the audio input
signal (e.g., music) and the excitation signal. In practice, however,
the excitation signals are weak and can easily be buried in the au-
dio input signal that is orders of magnitude stronger (discussed in
Section 2.2). From the usability point of view, our design should not
break the appearance and the internal structure of the headphones.
Besides, as the headphones are usually driven by mobile devices,
our design should also be low power, incurring zero or negligible
power consumption.

To address these challenges, we are inspired by a null measure-
ment circuit design—Wheatstone bridge. Originally Wheatstone
bridge was used to measure an unknown resistance by balancing
the two arms of the bridge. In HeadFi, we re-purpose the Wheat-
stone bridge to cancel the strong interference of the audio input
signals to measure the subtle variations in voltage caused by ex-
citation signals. Specifically, the left and right two drivers of the
headphones are connected to the two arms of the bridge using the
headphones’ stereo jacket. Once the bridge is balanced, its output
voltage does not change with the variation of the audio input signal.
On the other hand, the output voltage of this bridge still varies with
the pressure change around the headphones, which is affected by
the excitation signals such as the hand touch and the physiological
activities.

2Different from computer hardware drivers, a headphone driver is a capacitive
electronic component that drives the sound down to the ear canal.

Using Wheatstone bridge to detect subtle excitation signals
provides multiple advantages over existing high-precision meth-
ods [30, 32, 40, 41, 63]. First, it provides a high measurement sen-
sitivity as it is purely a passive circuit and thus less affected by
thermal noises compared to active circuits. Second, the inherent dif-
ferential circuit setup of this bridge cancels the strong audio input
signals without any overhead. Third, it only consists of two simple,
passive resistors. The simplicity of this design makes it easy to be
miniaturized and embedded into mobile devices. To summarize,
this paper makes the following contributions:
• We identify the feasibility of using the drivers already inside head-
phones to enable smart features. This idea potentially transforms
existing non-smart headphones into smart ones at an unprece-
dented scale.

• Wepropose a simple yet effective circuit design to realize this idea.
Our design uses purely passive components and costs extremely
little (i.e., <50 cents when fabricated at scale). We envision to
integrate it into the pairing device (e.g., a smartphone) in the
future. Our measurement study shows HeadFi has little impact
on sound quality of existing audio outputs (§2.4.3).

• We build a proof-of-concept prototype and conduct comprehen-
sive experiments. These experiments involve 53 volunteers and
54 pairs of headphones with estimated prices ranging from $2.99
to $15,000. We further showcase four types of smart applications
on non-smart headphones: user identification, touch based ges-
ture control, physiological sensing, and voice communication
without a microphone. We believe the potential of HeadFi is far
beyond these.
While the current prototype of HeadFi is for wired headphones,

the design can be easily extended to work with wireless headphones
by putting the miniaturized circuit in between the amplifier and
the Digital-to-analog converter (DAC). The rest of this paper is
organized as follows: Section 2 presents the design and performance
validation. We showcase four intelligent applications in Section 3−6.
We discuss related works in Section 7 and potential improvement
in Section 8. Conclusion follows in Section 9.

2 TRANSFORMING HEADPHONES INTO
SENSORS

HeadFi employs the pair of drivers inside headphones as versatile
sensors to realize the functionalities mentioned above. In essence,
speakers and microphones are reciprocal in principle [1]. For head-
phones without a built-in microphone, an intuitive solution would
be turning the speaker3 into a microphone to capture these exci-
tation signals. However, this solution does not work in our case
due to the following two reasons. First, the sensitivity of speaker-
converted microphone is inferior to purposely-built microphones
as diaphragms in headphones are well-calibrated for playing sound
as opposed to sound recording [50]. Second, the excitation signals
are feeble and will be buried in the music signal that is orders of
magnitude higher. Instead of converting the speakers into micro-
phones, we explore the coupling effect between headphones and
the surrounding environment and design a differential circuit to

3The driver is the key component of a speaker in headphones and therefore driver
and speaker are used interchangeably throughout the paper.
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Figure 2: An illustration of headphones’ working principle.

capture the minute voltage variation.

2.1 Modeling the Coupling Effect
The drivers in headphones turn electrical energy into sound by
vibrating the air through built-in magnets. We refer to the alter-
nating voltage that travels through the headphones’ voice coil as
𝐸ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 . As shown in Figure 2, the Lorentz force inducted by
the voltage variation pulls the voice coil back and forth, which then
drives the diaphragm to push the air. In this way, the electrical sig-
nals are transformed into sound. Note that this process is reciprocal,
i.e. the change of air pressure around the diaphragm of headphones
also alters 𝐸ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 .

The alternating voltage 𝐸ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 is determined by three fac-
tors: 𝑖) the electrical energy of the audio input signal (e.g., music); 𝑖𝑖)
the equivalent impedance of the headphones’ driver (𝑍ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 );
and 𝑖𝑖𝑖) the air pressure at the headphones’ diaphragm (𝑃ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 ).
Here we take the scenario when a user wears the headphones to
illustrate the concept. When a user puts on the headphones, the
headphones will cover the semi-closed inner ear of the user, as
shown in Figure 3 (left). The headphones, ear canal, and eardrum
then couple together to establish a pressure field that can be mod-
eled by the two-port Thevenin equivalent network [44], as shown in
Figure 3 (right). The definitions of the variables used in this model
are listed in Table 1. The relationship between the impedance 𝑍𝑥
and the pressure 𝑃𝑥 in this network can be modeled as follows:

𝑃𝑒𝑎𝑟𝑐𝑎𝑛𝑎𝑙

𝑃ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠
=

𝑍𝑒𝑎𝑟𝑐𝑎𝑛𝑎𝑙

𝑍𝑒𝑎𝑟𝑐𝑎𝑛𝑎𝑙 + 𝑍ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠
(1)

From the above equation, we can see 𝑍ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 varies with
the Thevenin pressure 𝑃ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 and 𝑃𝑒𝑎𝑟𝑐𝑎𝑛𝑎𝑙 , as well as the
ear canal’s impedance 𝑍𝑒𝑎𝑟𝑐𝑎𝑛𝑎𝑙 . These three factors are all af-
fected by human-induced excitation signals. For instance, when a
user touches the headphones’ enclosure, this touch would drive
the enclosure to vibrate and thus affects the Thevenin pressure
𝑃ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 . Similarly, physiological activities such as breathing
and heart beating would cause repetitive deformation of blood ves-
sels in the ear canal and alter 𝑃𝑒𝑎𝑟𝑐𝑎𝑛𝑎𝑙 . Besides, the size and shape
of the ear canal vary among individuals [44, 60]. Consequently,
the ear canal’s impedance 𝑍𝑒𝑎𝑟𝑐𝑎𝑛𝑎𝑙 differs from each other. As
𝐸ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 is linearly related to 𝑍ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 , we can therefore
leverage 𝐸ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 to sense the human-headphone interactions
and physiological activities. Note that the coupling effect still exists
when the headphones are not worn (Section 2.4.4). In this case, the
headphones are coupled with the surrounding environment.

2.2 Challenges
To realize this high-level idea, we face two fundamental challenges:
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Figure 3: The ear structure (left) and the two-port Thevenin equiva-
lent network (right).

𝑃ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 : Thevenin pressure of headphones.
𝑍ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 : The equivalent impedance of headphones.
𝑃𝑒𝑎𝑟𝑑𝑟𝑢𝑚 : Thevenin pressure of eardrum.
𝑍𝑒𝑎𝑟𝑑𝑟𝑢𝑚 : The equivalent impedance of eardrum.
𝑃𝑒𝑎𝑟𝑐𝑎𝑛𝑎𝑙 : Thevenin pressure of ear canal.
𝑍𝑒𝑎𝑟𝑐𝑎𝑛𝑎𝑙 : The equivalent impedance of ear canal.
Table 1: Definition of variables in Thevenin equivalent network.

How to measure the subtle variation of 𝐸ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 in an
accurate and non-intrusive way? Adopting the general-purpose
voltmeter to measure 𝐸ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 is usually inconvenient. Building
a dedicated voltmeter, on the other hand, would inevitably add
weight, size, and cost to the portable headphones. Even worse, the
voltmeter’s accuracy suffers from the strong magnetic interference
of theworking headphones [27]. Besides, themeter readings contain
uncertainties due to the limited resolution and calibration offset.

How to capture the minute changes in 𝐸ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 caused
by excitation signals in the presence of strong audio input
signal? 𝐸ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒 varies with both excitation signals and audio
input signals. Unfortunately, the excitation signal can easily be
buried in the audio signal, which is orders of magnitude larger. As
shown in Figure 4, 5 and 6, the input audio signal (music) is in
the order of hundred millivolts, while the voltage variation caused
by a user’s speech, most of the time, is less than one millivolt.4
Measuring such a minute variation in voltage is challenging even in
the absence of strong audio input signals because the measurement
accuracy is related to the voltage value. For instance, measuring
a change from 3.3 𝑉 to 3.2 𝑉 is less error-prone compared to a
change from 0.1𝑉 to 0𝑉 , even though the amount of change is the
same (0.1 𝑉 ). This discrepancy is due to the nature of electronic
circuits being more susceptible to noise and variations near 0 𝑉 .

As a mainstream approach, differential amplifiers have been em-
ployed to detect the minute change in voltage [12, 46, 62]. However,
the stable circuit operation in these designs comes with their own
design challenges. For instance, they all build upon bulky circuits
and require the input and output loads to be well matched across
frequencies [25]. Besides, these designs also suffer from strong
noise from 𝑖) the pre-amplifier due to the thermal noise [24, 36]
induced by the large input resistance, and 𝑖𝑖) additional errors from
the process of subtraction between two large numbers (the signal
and the reference) to measure the small difference.

4The data is measured by the AKG K240s headphones.
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Figure 4: 𝐸ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 caused by
talking to the headphones.

Figure 5: 𝐸ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 caused by
tapping the headphones.

Figure 6: 𝐸ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 caused by
playing a piece of music.
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Figure 7: Null measurement in the Wheat-
stone bridge.

2.3 Null Measurement
We leverage a passive, null measurement circuit—Wheatstone bridge,
to detect the minute variation of 𝐸ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 .

Wheatstone bridge primer. AWheatstone bridge consists of two
voltage divider arms, each consisting of two simple resistors con-
necting the power source and ground terminal. Originally this
bridge was used to measure an unknown resistance (as small as
several milli-Ohms) by tuning the trimpot until the two arms reach
to a balanced state (i.e., the output voltage is zero) [35]. As shown
in Figure 7, 𝑅1 and 𝑅2 are two identical bridge arm resistors. 𝐶𝑥
is the unknown load and 𝐶1 is the the trimpot. The trimpot 𝐶1 is
tuned until its impedance equals to the impedance of 𝐶𝑥 , leading
to a “balanced” bridge. In such a balanced state, the voltages on
these two loads are the same, resulting in a zero voltage output
(𝑉𝑔 = 0). Any minute change in the impedance of𝐶𝑥 would alter the
voltage on this load and break the balance of the bridge, resulting
in a non-zero voltage output (i.e., 𝑉𝑔 ≠ 0).

Detecting minute voltage with the bridge. In HeadFi, we re-
purpose the Wheatstone bridge to cancel the strong audio input
signals and measure the subtle changes in headphone impedance5
caused by excitation signals. We replace the unknown load 𝐶𝑥 in
the bridge with the driver of the headphones. The audio input (e.g.,
music signal) serves as the voltage supply 𝑉𝑖𝑛 to this bridge. Once
the bridge is balanced, the voltage output𝑉𝑔 becomes zero. The vari-
ation in audio input signal 𝑉𝑖𝑛 does not break the bridge’s balance.
However, as we mentioned in Section 2.1, the excitation signals
caused by human gestures and physiological activities inherently
break the balance of the bridge and alter the voltage measured
(𝐸ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 ). More importantly, the Wheatstone bridge is super
sensitive to the voltage variation at the headphones. Thus, we can
leverage the variation in the voltage output of this bridge 𝑉𝑔 to
detect even very subtle excitation signals.

UsingWheatstone bridge tomeasure the variation of𝐸ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠
owns three key advantages over differential amplifier based designs:
𝑖) it is sensitive to minute voltage change and therefore it enables
us to detect even very weak excitation signals. Following Kirch-
hoff’s law, the two arms of the Wheatstone bridge contain only
passive resistors (no capacitor or indicator) and therefore it achieves
the lowest possible noise; 𝑖𝑖) the differential circuit of Wheatstone
bridge naturally cancels out the strong input audio signal without
an extra overhead; 𝑖𝑖𝑖) the simplicity of this design makes it easy to
be miniaturized and embedded into a smartphone as an integrated

5The voltage change is linearly related to the headphone impedance change.

circuit.

Balancing theWheatstone bridge. Tomeasure theminute change
in 𝐸ℎ𝑒𝑎𝑑𝑝ℎ𝑜𝑛𝑒𝑠 , it is important to balance the Wheatstone bridge
first. The audio input signal is a wideband AC signal varying over
the entire audible band from 20 Hz to 20 kHz. To balance the bridge
over this audible band, the trimpot 𝐶1 should be tuned to match
𝐶𝑥—the load of headphones’ driver. Accordingly, 𝐶1 should be an
RLC type of circuit to match the driver’s load. However, in practice,
this balancing mechanism is not scalable since different headphones
have dramatically different driver impedance values.

We instead leverage the symmetry nature of the drivers to solve
this problem. The drivers of headphones come in a pair (i.e., in both
left side and right side of the headphones). To ensure a good user
experience, each pair of drivers undergo a fine-grained calibration
during manufacturing to ensure the impedance of the two drivers
are exactly the same. Based on this intuition, HeadFi replaces the
trimpot 𝐶1 with the second driver in the headphones, which natu-
rally balances the bridge without introducing any complex tuning
circuits.

Physical interpretation of𝑉𝑔 . The pair of drivers in headphones
are wired to be in-phase for coherent stereo AC signal. Note that
when 𝐶𝑥 and 𝐶1 are replaced by the two drivers, the voltage mea-
sured at the left driver 𝐸𝑙𝑒 𝑓 𝑡 and the right driver 𝐸𝑟𝑖𝑔ℎ𝑡 come to
the bridge are phase inverted. That is to say, the voltage output
𝑉𝑔 of the bridge characterizes the difference of 𝐸𝑙𝑒 𝑓 𝑡 and 𝐸𝑟𝑖𝑔ℎ𝑡 :
𝑉𝑔 = 𝐸𝑙𝑒 𝑓 𝑡 −𝐸𝑟𝑖𝑔ℎ𝑡 . In some applications (e.g., heartbeat, and breath-
ing monitoring), the excitation signal is picked up by both drivers
in the headphones. Hence, a critical question is whether the voltage
variation caused by the excitation signals is canceled by the bridge
without being detected, i.e.,𝑉𝑔 = 0. In practice, the excitation signals
arrive at these two drivers usually through different paths. Hence,
𝐸𝑙𝑒 𝑓 𝑡 ≠ 𝐸𝑟𝑖𝑔ℎ𝑡 . HeadFi can therefore still leverage this differential
voltage measurement to detect the minute excitation signals. We
believe the generalized concept of repurposing an actuator pair’s
response into sensing signals using the Wheatstone bridge can be
applied in other domains such as robot control. For example, one
can use the bridge to cancel the control signal and detect subtle
mechanical vibration caused by collision [31].

Hardware implementation. Figure 8 shows the schematic of
HeadFi. We prototype HeadFi on PCB board as a plug-in periph-
eral, connecting the headphones and the smartphone with two
standard Stereo 3.5 mm jacks. The user can manually turn on/off
HeadFi using the switch 𝑆1, which allows the input audio signal to
go through/bypass the bridge. 𝑅1 and 𝑅2 are two identical 50 ohm
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Figure 8: Schematic of HeadFi.

Figure 9: Part of the headphones
used in our experiments.

Figure 10: The setup for our
benchmark experiments.

resistors. The output of this bridge is connected to a low-power
amplifier, which can be replaced by the built-in amplifier in the
smartphone. With this setting, the output voltage signal 𝑉𝑔 will be
automatically sent to the smartphone through the audio cable. How-
ever, the ADC in the smartphone does not sample signals coming
from its audio jack unless it detects the presence of a microphone.
Microphone detection is achieved by measuring the impedance of
the device plugged into this audio jack. The impedance of a micro-
phone is in the order of kilo-ohms. As long as a large impedance is
detected, a microphone is considered to be detected. However, the
output impedance of the amplifier in HeadFi is less than 100 Ω. We
thus add a large resistor 𝑅𝐿 (5 kΩ) to HeadFi to fool the smartphone
as if a microphone exists.

Manufacturing cost. Our prototype consists of two passive resis-
tors and an amplifier; hence its cost would be extremely low (< 50
cents) when fabricated at scale. The power consumption of this
board, on the other hand, comes from the amplifier (e.g., 0.2 mW),
which can be further reduced by using the dedicated, low-power
amplifier in the smartphone.

2.4 Benchmark evaluation
We conduct benchmark experiments to answer the following two
questions: 𝑖) Is HeadFi sensitive enough to capture subtle voltage
variation? 𝑖𝑖) Does HeadFi affect the sound quality of the output
audio signal? These benchmark experiments involve 54 pairs of
different “dumb” headphones with price ranging from $2.99 to
$15,000. Figure 9 shows a photo shot of the headphones involved
in the experiments. The list of these tested headphones and their
details are presented in the Appendix.

(a) CDF of the normalized RSS across
54 pairs of headphones.

(b) CDF of normalized FRSS across 54
pairs of headphones.

Figure 11: Evaluating the sensitivity of HeadFi on (a) direct excita-
tion signals; and (b) indirect excitation signals.

2.4.1 Detection sensitivity on direct excitation signal. Most earable
applications rely on the measurement of the direct excitation signal,
e.g., physiological activities (§4), touch-based gestures (§5), and
human voice signals (§6). We now show the sensitivity of HeadFi
is high enough to detect these direct excitation signals. We em-
ploy a Philips MC 175C speaker and multiple pairs of headphones
for the benchmark experiment. The headphones are put on an
E.A.R.S dummy head [15] 20 cm away from the speaker as shown
in Figure 10. The speaker broadcasts a 1 kHz sinusoidal tone as
the excitation signal. The volume of this signal is set to 60 dBA—a
value close to the chat volume at 1 m away [13]. Note that even a
subtle touch on the headphones produces a much stronger signal
than this tone signal. HeadFi is connected to the headphones and
“records” the RSS (received signal strength) of the excitation signal.
We repeat this experiment on all 54 pairs of headphones and plot
the empirical CDF of RSS measurements in Figure 11(a). For com-
parison, we also measure the RSS values when the speaker does
not send any excitation signal. We observe the median value of the
normalized RSS readings is around 0.09 in the absence of excitation
signal. It jumps to 0.44 in the presence of weak excitation signals.
The lowest RSS value in the presence of the excitation signal is 0.14,
which is still higher than the maximum RSS value in the absence of
the exciting signal. These results demonstrate HeadFi is sensitive
enough to detect even minute excitation signals.

2.4.2 Detection sensitivity on indirect excitation signal. Some ap-
plications do not produce direct excitation signals. For example, to
detect whether the user puts on the headphones or not, the smart-
phone itself needs to emit an acoustic signal. HeadFi then records
the reflections of this signal to sense the surrounding environment.
In this benchmark experiment, we program a smartphone to send
out a chirp signal with its frequency changes linearly from 20 Hz
to 20 kHz. HeadFi then records the RSS of the reflection signal.
Note that as RSS value can only be obtained for a single frequency,
for a frequency-varying chirp signal, we thus define a new metric
𝐹𝑅𝑆𝑆 by taking into account the responses over the entire chirp
frequency band:

𝐹𝑅𝑆𝑆 =

𝑛−1∑
𝑘=0

|𝑋1 (𝑘) − 𝑋2 (𝑘) | (2)

where 𝑋1 (𝑘) and 𝑋2 (𝑘) are the normalized outputs of the Discrete
Fourier Transform (DFT) of the reflected chirp signal when the
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- W HeadFi

- W/O HeadFi

- W HeadFi

- W/O HeadFi

Sennheiser HD600

Mackie MC150

(a) The impact of HeadFi on head-
phones’ frequency response (FR).

W/O headFi

W headFi

(b) A snapshot of the cumulative spec-
tral decay (CSD).

Figure 12: The impact ofHeadFi onheadphones. (a) The FRof ahigh-
(Sennheiser HD600, $399.95) and low-quality (MackieMC150, $49.0)
headphones in the presence and absence of HeadFi, respectively. (b)
A CSD snapshot of Mackie MC150.

headphones are ON and OFF the dummy head respectively. 𝑛 is the
number of DFT frequency bins.

We first place a pair of headphones on the dummy head and
record the output of HeadFi as shown in Figure 10. We then take
the headphones off the dummy head and record the output of
HeadFi again. We repeat this experiment 54 times by replacing the
headphones each time. Figure 11(b) shows the CDF of the normal-
ized signal difference when the headphones are ON and OFF the
dummy head for all 54 pairs of headphones. For comparison, we
also plot the difference when two measurements are both obtained
with the headphones on the dummy head. We can see a clear gap
between the two curves in Figure 11(b), indicating HeadFi can pick
up the environment changes around the headphones. Note that the
plot includes data from all 54 pairs of headphones. For a single pair
of headphones, the gap is even larger. The result demonstrates that
HeadFi is sensitive enough to capture the minute change of the
indirect excitation signals. Our evaluation on user identification
shows that HeadFi is sensitive enough even to differentiate two
twin girls (§3.2.2) by profiling their unique ear canals.

2.4.3 Impact on sound quality of the output audio signals. One may
concern that HeadFi contaminates the output signal (e.g., music),
since it wires the headphones and the pairing device as if it breaks
the audio chain. We put two types of headphones on a MiniDSP
E.A.R.S dummy head and measure the frequency response (FR) of
these headphones in the presence and absence (for comparison)
of HeadFi. Figure 12(a) shows the result. We observe the two FR
curves show very similar patterns for the two headphones, indi-
cating HeadFi does not affect the frequency response of the head-
phones. The gap between two FR curves indicates the electrical
signal experiences a larger attenuation in the presence of HeadFi.
As a result, the user will hear a slightly weaker sound but the signal
quality is not affected. This is due to the extra voltage loss when
the music signal passes through HeadFi. We further measure the
cumulative spectral decay (CSD) of the low-quality Mackie MC-
150 headphones to validate this observation. CSD is a standard
metric for measuring the performance of the headphone driver.
As shown in Figure 12(b), we observe two CSD snapshots exhibit
very similar patterns, indicating HeadFi has a minimal impact on
sound quality of the output signals. Another concern is that for
low-end headphones (e.g., MSRP < $2), the left and right drivers
may not perfectly match, and two simple resistors might not be

(a) Tap the enclosure (b) Breathe air to the driver

Figure 13: Time domain signal when the headphones are placed on
a table. (a) The enclosure is tapped by a finger and (b) breathing air
to the driver.

(a) The transmitted and received chirp
signal in time domain.

(b) The spectrogram of the transmit-
ted chirp signal.

Figure 14: An illustration of chirp signal. (a) The transmitted (top)
and received chirp signal in time domain. (b) The spectrogram of a
transmitted chirp whose frequency spans from 20 Hz to 20 kHz in
one second.

able to cancel the audio signal completely. To deal with this issue,
one possible solution is to add an auto-balance RLC potentiometer
in the nulling circuit, which can tune the value of the resistors on
both sides to re-balance the bridge in HeadFi.

2.4.4 HeadFi can still work when headphones are not worn by a
user. Note that HeadFi does not need to be worn by a user to work.
The pressure field-based fine-grained sensing capability still exists
when the headphones are not worn by a user. The coupling effect
mentioned in Section 2.1 now appears between the headphones and
their surroundings. Any external excitation from the environment
can still change this pressure field and disturb the coupling. There-
fore, HeadFi can still work when headphones are not worn by a
user. To validate this, we place a pair of headphones on a table and
conduct two experiments to demonstrate the sensing capability of
HeadFi: (i) sense subtle finger touch and (ii) sense airflow induced
by mouth. Figure 13 shows the time domain signal and we can see
that HeadFi is able to detect these two types of external excitations.

3 USER IDENTIFICATION
We first demonstrate HeadFi can be used for user identification. The
mainstream identification method – face recognition, does not work
well in poor lighting conditions or when the user wears a mark.
HeadFi can be leveraged to check the user identity and unlock
the phone (pairing device) regardless of the lighting conditions.
Face recognition also raises privacy concerns, whereas HeadFi can
identify users without taking photos.
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(a) iHip Mr Bud ($ 3.6) (b) Beyerdynamic T1 ($ 999)

Figure 15: Channel response of three persons characterized by (a)
low-end and (b) high-end headphones.

3.1 Signal Processing
Ideally, an identification service should be non-intrusive, i.e., it
should be triggered automatically as long as the user put on the
headphones. As such, our design should be able to 𝑖) detect if the
user puts on the headphones and 𝑖𝑖) identify the user automatically.
Headphones ON-OFF detection. Our design is inspired by the
seashell resonance effect [38]: when a seashell is clasped to the ear,
the ambient acoustic noise will resonate within the cavity of the
seashell and certain frequency noise will get amplified. One can
thus hear ocean-tide-like sounds from the seashell. Similarly, once
the user puts on her headphones, the headphones, ear canal, and
eardrum establish a resonance chamber, amplifying the ambient
acoustic noise. This amplified noise leads to a higher voltage signal
output measured at HeadFi. Based on this observation, we use the
RSS and its standard deviation (𝜎) for ON-OFF detection. These two
values jump dramatically when the user puts on the headphones.
Identification. Since the headphones now can transmit and receive
at the same time, we can now proactively probe the ear channel
response using the headphones. Specifically, the smartphone sends
a chirp signal through the headphones to profile the user’s inner ear
structure. The two drivers of the headphones receive echo signals
that characterize the ear canal’s channel response. Figure 14(a)
and 14(b) show the chirp signals in time domain and frequency
domain, respectively.

As HeadFi measures the voltage difference between the two dri-
vers of headphones, one may wonder whether the channel response
from the left ear cancels out that from the right ear. Interestingly,
the ear-related physiological uniqueness not just exists between
two users, but also between two ears of the same person [39, 42].
Hence the channel response measured at two ears would not be the
same. Figure 15 shows the channel response measured by HeadFi
on three different persons. We can see the channel responses are
dramatically different in frequency bands higher than 3 kHz. This
is because the physiological differences between human ears are in
the scale of sub-centimeter level, which can be picked up by signals
with a wavelength of sub-centimeter (≥ 3 kHz). We further adopt
a preamplifier (INA126) to control the output level. As a result,
HeadFi can retrieve a clear echo even the excitation signal is weak.
Proof-of-concept. As a proof-of-concept, we use support vector
machine (SVM), a light-weight classifier for user identification.
Specifically, we collect multiple copies of the user’s echo chirp as
positive samples. We then collect the same amount of negative
samples by putting the headphones on the E.A.R.S dummy head.

Figure 16: ON-OFF detection Figure 17: Precision test.

(a) FAR (b) FRR

Figure 18: The identification performance for four classifiers. (a)
FAR results. (b) FRR results.

Finally we train a binary SVM classifier and perform 𝑘-fold [22]
cross-validation.

3.2 Experiment
The experiments involve 27 participants (7 females and 20 males),
including one pair of identical twins. By default, we use the Jays U-
JAYS supra-aural headphones (MSRP $ 19.99) as the testing device.
The chirp duration is one second throughout the experiments. The
participant is asked to put on and then take off the headphones each
time we record an echo chirp. We record 50 echo chirps for each of
the 25 participants and 100 echo chirps for each of the twins.

3.2.1 ON-OFF detection. We first evaluate the success rate of ON-
OFF detection across 54 pairs of headphones. We further categorize
the results into five groups based on headphones types and show the
results in Figure 16. We observe that the success rate is consistently
high (>97.93%) across all five types of headphones. In particular,
IEM headphones achieve the highest success rate (99.8% on average)
since this type of headphones go deeper into the ear canal and thus
are less affected by noise.

3.2.2 User Identification. Next, we evaluate the performance of
user identification. In each experiment, we adopt 𝑘-fold (𝑘=5) cross
validation to demonstrate the system performance. We adopt preci-
sion [29] as our evaluation metric. A high precision value indicates
only the authorized users can successfully pass the verification.
Figure 17 shows the precision under different chirp bandwidth
settings. When the chirp bandwidth is relatively small (e.g., < 4
kHz), we observe that the precision grows with increasing chirp
bandwidth. The precision then fluctuates around 95% as we further
increase the bandwidth to 15 kHz. It then drops to around 90% as
the frequency bandwidth goes beyond 15 kHz. Such precision vari-
ation is due to the subtle changes during multiple rounds of putting
on headphones: the sub-𝑚𝑚 level changes can be captured by the
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Prediction
User One User Two Total

Ground-truth User One 36, 018(94.8%) 1, 982(5.2%) 38, 000
User Two 1, 831(4.8%) 36, 169(95.2%) 38, 000

Table 2: Confusion matrix for twin girls. The results are presented
using 𝑘-fold cross validation.

Status Sitting still Moving head Eating Walking

FRR (%) 3.64 4.75 5.15 8.75

Table 3: Impact of human motions.

high-frequency (higher than 15 kHz) signal, which disturbs the
user identification. Suggested by this study, we employ a frequency
band from 100 Hz to 10 kHz as the default chirp bandwidth. We
exclude the frequency band below 100 Hz because most mechanical
movement-induced noise is in this frequency range.

Impact of different classifiers. Next, we evaluate the identifi-
cation performance with four classifiers, Naive Bayesian (NB), 𝑘-
nearest neighbors (KNN), decision tree (DT), and SVM. We investi-
gate and report the false acceptance rate (FAR) and false rejection
rate (FRR). As shown in Figure 18(a) and 18(b), SVM achieves the
best performance for both FAR and FRR. We envision more ad-
vanced learning techniques such as DNN can be applied to further
improve the identification performance.

Differentiating twins. We further conduct user identification ex-
periment on two 26-year old identical twin girls. Identifying twins
is challenging because they share very similar physiological fea-
tures. However, as suggested by the confusion matrix in Table 2,
the identification performance for twins is comparable (95% success
rate) to other individuals. Note we collected 100 echo chirps for each
individual of the twins. Therefore we performed a total of 38000
classification tests for each individual in the 𝑘-fold cross-validation.

Impact of humanmotions. We conduct user identification when
the subject is sitting still, moving her head, eating, and walking.
The result is shown in Table 3. We observe that larger body move-
ments undermine the user identification performance. In particular,
HeadFi achieves the lowest false rejection rate when the subject is
sitting still. The false rejection rate increases as the user starts to
move, e.g. eating, walking, or moving her head. This is expected
since the headphones are likely to move with the human motions
and alter the channel response.

Long-term user identification. We further track one volunteer
over two months and record the user identification performance
over time. The result is shown in Table 4. We observe that the iden-
tification precision decreases gradually from 96.45% to 92.17% over
two months. We suspect the reason behind this is the physiological
characteristics of this subject change over time. For example, the
fluid in the ear can alter the ear canal’s frequency response, which
impacts the user identification performance [26]. To validate this
hypothesis, we conduct user identification after the shower and

Time Reference One Day One Week One Month Two Months

Average Precision (%) 96.45 95.20 94.51 93.26 92.17

Table 4: Identification performance over time.

(a) The voltage output before and af-
ter filtering.

(b) The ACF plot and time domain in-
terference.

Figure 19: (a) heartbeat signal becomes clear after filtering. (b) ACF
is adopted to calculate the heartbeat rate (top) and an example of
time domain interference caused by body movements (bottom).

observe a 7% drop in identification accuracy.

4 PHYSIOLOGICAL SENSING
Next, we demonstrate the feasibility of applying HeadFi to detect
subtle physiological signals. Vital physiological sign sensing plays a
key role in human health monitoring. HeadFi can empower users to
continuously and accurately monitor a variety of key physiological
activities (e.g., heartbeat rate) using their non-smart headphones.
Below we take heartbeat monitoring as an illustrative example.

4.1 Signal Processing
Monitoring heartbeat is challenging due to the extremely weak
excitation signal induced by the subtle blood vessel deformation
in the ear canal. As shown in Figure 19(a) (top), such a minute
excitation signal can be buried in the noise and interfered by user
motions. To solve this challenge, we first pass the signal output
from HeadFi through a low-pass filter with a very low cut-off fre-
quency (𝐹𝑐 = 24Hz) to remove the high-frequency noise introduced
by the echoes of audio input signals and environment excitations.
The result is shown in Figure 19(a) (bottom). We then leverage the
auto-correlation function (ACF) to identify the periodicity which
corresponds to the heartbeat rate:

𝑟𝑥𝑥 (𝑘) =
1

𝑁 − 𝑘

𝑁−1−𝑘∑
𝑛=0

𝑥 (𝑛)𝑥 (𝑛 + 𝑘) . (3)

where 𝑥 (𝑛) is a copy of the signal output from HeadFi and 𝑘 is
the lag. 𝑁 is the length of the received signals. Figure 19(b) (top)
shows an example of the auto-correlation output. The location of
peak values reflects the time period of one heartbeat cycle. Blindly
enumerating all choice of 𝑘 in hopes of finding the peak is compu-
tationally intractable. It may also introduce false positives. We thus
set the upper (𝑈 ) and lower (𝐿) bounds of 𝑘 based on the possible
heartbeat rate of human beings (35 - 200 bpm [59]). Our goal can
be represented by the following function:

𝑘★ = argmax
𝑘⊆(𝐿,𝑈 )

𝑟𝑥𝑥 (𝑘) . (4)

We then calculate the heartbeat rate using the equation 𝑅𝐵𝑃𝑀 =

60 · 𝐹𝑠
𝑘★

, where 𝐹𝑠 is the sampling rate. In reality, however, body
movements may also introduce strong excitation signals that can
overwhelm the minute heartbeat signals, as shown in Figure 19(b)
(bottom). We thus truncate the voltage output from HeadFi into
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Figure 20: The heartbeat monitoring error rate is low when 𝐹𝐶 is
below 50 Hz.

windows and calculate 𝑅𝐵𝑃𝑀 within each window. We then ap-
ply an outlier detection algorithm [54] to filter out those outlier
estimations and average the remaining to obtain the heartbeat rate.

4.2 Experiment
In this section, we evaluate the performance of heartbeat rate mon-
itoring. Each measurement lasts for 40 seconds. We truncate a
recording session using a window size of four seconds, with an
overlapping of two seconds. We measure the heartbeat rate of the
participant in two conditions: 𝑖) with audio input signal on (i.e.,
listening to the music during the testing); and 𝑖𝑖) with audio input
signal off. The ground-truth is obtained by a CONTEC CMS50D1A
pulse oximeter [6]. We use error rate (ER) to measure the perfor-
mance of our heartbeat monitoring: 𝐸𝑅 =

|𝑅𝐻𝐹−𝑅𝑃𝑂 |
𝑅𝑃𝑂

, where 𝑅𝐻𝐹

and 𝑅𝑃𝑂 are the heartbeat rate reported by HeadFi and the oximeter,
respectively.

Impact of the cut off frequency 𝐹𝐶 . We first change the low pass
filter’s cutoff frequency from 2.4 Hz to 240 Hz and measure the error
rate under each cutoff frequency setting. The participant listens
to the music throughout the experiment. As shown in Figure 20,
we observe that the error rate stays at a low level (below 2.0%)
when the cut-off frequency is lower than 50 Hz. The error rate
then grows to around 15% significantly as we increase 𝐹𝐶 to 150
Hz. Suggested by this result, we set the cut-off frequency to 24 Hz,
which empirically minimizes the error rate.

Heartbeat rate monitoring accuracy. We evaluate the accuracy
of the heartbeat rate estimation using all 54 pairs of headphones.
In particular, we categorize these headphones into three groups,
namely, circumaural headphones (C), supra-aural headphones (S),
and in-ear model (IEM). The result is shown in Figure 21(a). We
observe that HeadFi achieves consistently low error rate across all
three groups of headphones. Circumaural headphones (C) achieve
the lowest error rate both in the absence (1.37%, C) and presence
(1.42%, C-M) of audio input signals, followed by supra-aural head-
phones (1.40% and 1.68% in these two cases, respectively). HeadFi
achieves the highest error rate for the IEM headphones: around
1.64% and 2.42% in the absence (IEM) and presence (IEM-M) of
audio input signals, respectively. While the intrinsic reason behind
this performance drop is unknown, one possible reason could be
that IEM headphones have less contact area with skins and thus

(a) Impact of ambient noise. (b) Impact of body movement.

Figure 21: Error rate of the heartbeat rate estimation. (a) We mea-
sure the error rate both in the absence (the first three columns) and
in the presence (the last three columns) of the audio input signal.
(b) We measure the error rate both in the absence and presence of
strong body movements.

receive the weakest vibration signals compared to the other two
types of headphones. The maximum error rate achieved by HeadFi
is around 3%, which still satisfies the requirement (less than 5%)
for commercial heartbeat monitoring systems [49]. These results
demonstrate the feasibility of using HeadFi to measure user’s heart-
beat rate even in the presence of strong interference signals (e.g.,
music).

Impact of body movement. In this experiment, 27 participants
(including 7 females and 20 males between 27 to 55 years old) are
asked to put on/off the headphones occasionally during the testing,
which brings in a strong interference signal. Figure 21(b) shows
the error rate. We also show the error rate in the absence of body
movement for comparison. We observe a slight increase (0.59% on
average) in the error rate in the presence of body movements, while
the overall error rate is still less than 3%, well below the requirement
for commercial heartbeat monitoring systems (< 5%).

5 TOUCH-BASED GESTURE RECOGNITION
We next demonstrate the feasibility of transforming the enclosures
of the non-smart headphones into virtual touchpads using HeadFi.
The rationale behind this is that the variation in the output voltage
𝑉𝑔 caused by different gestures manifests unique features in both
spatial and temporal domains. Without loss of generality, we define
four touch-based gestures: 𝑖) tapping the left enclosure − pause
or play; 𝑖𝑖) tapping the right enclosure − mute; 𝑖𝑖𝑖) sliding on the
left enclosure − volume up and 𝑖𝑣) sliding on the right enclosure
− volume down. Note that the gestures that can be supported by
HeadFi are not limited to these four gestures.

5.1 Signal Processing

Distinguishing left tapping and right tapping. We invite a vol-
unteer to tap the left and right enclosure of one pair of headphones
and record the RSS out of HeadFi. As shown in Figure 22(a), when
there is a tap on the headphones, we can always observe multiple
RSS peaks. In particular, when the user taps the left enclosure, there
is a negative peak followed by a positive peak, as shown in Figure
22(a) (top). In contrast, the positive peak shows up ahead of the
negative peak when the user taps the right enclosure (Figure 22(a)
(bottom)). This is because the Wheatstone bridge measures the
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Negative FP

(a) Tapping

Negative FP

(b) Sliding

Figure 22: The voltage output signals 𝑉𝑔 caused by different touch-
based gestures. (a) tapping the left (top) and right (bottom) enclo-
sure. (b) sliding on the left (top) and right (bottom) enclosure.

(a) Before applying CUSUM (b) After applying CUSUM

Figure 23: Output signal𝑉𝑔 before and after applying CUSUM.

differential voltage between the two drivers of headphones. Con-
sequently, the excitation signals measured at the bridge are phase
inverted for right tap and left tap. Note that the echoes of input
music signal been recorded by HeadFi are orders of magnitude
weaker and would not overwhelm peaks introduced by tapping
gestures.

Distinguishing left sliding and right sliding. Similar to the tap-
ping gestures, left and right sliding can also be easily distinguished
based on the same principle. On the other hand, sliding gestures
usually last longer than tapping in time domain, as shown in Fig-
ure 22(b). We can thus leverage the peak interval to distinguish
them.

Algorithm. We adopt cumulative sum (CUSUM), a light-weight
detection technique to capture these temporal features for gesture
recognition. Specifically, we denote the output voltage samples by
𝑋𝑛 . CUSUM associates each signal sample with a weight 𝜔𝑛 and
then computes a value 𝑆𝑛 with the following equations:

𝑆0 = 0
𝑆𝑛+1 =𝑚𝑎𝑥 (0, 𝑆𝑛 + 𝑥𝑛 − 𝜔𝑛) .

(5)

This simple function, however, removes all negative peaks and
thus cannot be directly used to distinguish left tapping and right
tapping. Note that we build the second CUSUM function by replac-
ing the 𝑚𝑎𝑥 with a 𝑚𝑖𝑛 operation in order to keep the negative
peaks. The output voltage samples go through these two CUSUM
functions (𝑚𝑎𝑥 and 𝑚𝑖𝑛) in parallel. Figure 23 shows the signal
before and after applying the CUSUM operation, respectively. We
observe that the impact of ambient music signals has been suc-
cessfully removed after applying the CUSUM operation, leaving
us only the peaks. We then determine left sliding/tapping or right

Predicted Gesture
One Two Three Four Total

Ground-truth Gesture

One 297(99.0%) 1(0.3%) 2 0 300
Two 2(0.6%) 297(99.0%) 1(0.3%) 0 300
Three 0 1(0.3%) 297(99.0%) 2(0.6%) 300
Four 1(0.3%) 0 1(0.3%) 298(99.3%) 300

Table 5: The recognition accuracy for the predefined 4 touch ges-
tures without audio input.

Predicted Gesture
One Two Three Four Total

Ground-truth Gesture

One 295(98.3%) 3(1.0%) 1(0.3%) 2(0.6%) 300
Two 1(0.3%) 296(99.0%) 1(0.3%) 2(0.6%) 300
Three 1(0.3%) 3(1.0%) 294(98.0%) 2(0.6%) 300
Four 2(0.6%) 2(0.6%) 3(1.0%) 293(97.7%) 300

Table 6: The recognition accuracy for the predefined 4 touch ges-
tures with music playing.

sliding/tapping based on the following rule:{
𝑡1 ≥ 𝑡2 𝑙𝑒 𝑓 𝑡

𝑡1 < 𝑡2 𝑟𝑖𝑔ℎ𝑡
(6)

where 𝑡1 and 𝑡2 are the starting time points of the first positive peak
and first negative peak, respectively. We further define the duration
of a gesture as the mean time between the first and the last non-
zero CUSUM value. To distinguish tapping and sliding gestures,
we measure the duration of different individuals and empirically
set a threshold of 5000 samples (equivalent to 0.1𝑠 at the 48000 Hz
sampling rate).

5.2 Experiment
We use AKG K240s (MSRP 39.99$) headphones as the testing device.
We repeat each gesture 300 times with the audio input signal on
and off, respectively. The collected data are offloaded to a laptop for
analysis. Table 5 and 6 show the confusion matrix of the classifica-
tion result. The overall classification result is consistent across four
gestures in both quiet (without audio input signals) and noisy (with
audio input signals) conditions. We achieve 99% classification ac-
curacy in the absence of the audio input signals. The classification
result drops slightly to around 98% in the presence of audio input
signals. This result demonstrates the feasibility of applying HeadFi
to enable touch-based gesture control on the headphones.Wewould
like to point out that we adopt the most straightforward detection
algorithm (i.e., CUSUM) here as a proof-of-concept. One can lever-
age advanced machine learning algorithms to further improve the
detection performance and scale to more complex gestures.

6 VOICE COMMUNICATION
Last but not least, we demonstrate the feasibility of using HeadFi
to enable full-duplex voice communication on those headphones
without a built-in microphone. As discussed in Section 2.3, the
human voice signals will not be canceled out by the bridge since
the voice signals propagate to left and right headphone drivers
through two complicated but independent channels determined by
air, bones, tissue, etc.

The impact of echoes. One interesting issue that may exist with
our design is the echo. 6 This is because during a voice call, HeadFi
captures the voice from not just the HeadFi user side but also the

6Without loss of generality, here we assume the user on the other side is not using
HeadFi for easier explanation.
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(a) Objective evaluation. (b) Subjective evaluation.

Figure 24: (a) Objective and (b) subjective evaluations on the quality
of voice call over different types of headphones.

other side at the headphone’s diaphragm. Both captured voices
will be transmitted to the other side. Thus, the other side may
hear an echo of her own voice. Fortunately, this issue is already
addressed by the service providers. To provide high-quality voice
communication, service providers usually run sophisticated signal
cancellation algorithms at the base station to remove echoes before
transmitting the voice signals to the receiver [2]. Therefore, echoes
would not be a problem and the evaluation results also confirm this.
Next, we present our evaluation results in voice communication.

6.1 Experiment

Metric and experiment setup. Objective speech quality evalu-
ation methods such as Perceptual Evaluation of Speech Quality
(PESQ) and Perceptual Evaluation of Audio Quality (PEAQ) are
widely used in telephony. These metrics are however not suitable
for HeadFi since they are specifically designed for evaluating the
degradation of audio signal caused by telephony network but not
the degradation caused by end device. Motivated by PEAQ, we
conduct an objective evaluation of the voice quality by correlating
the voice recorded by HeadFi with the one recorded by the built-in
microphone of a smartphone. We refer to this score as HeadFi PEAQ
(HPEAQ). A higher HPEAQ manifests a higher similarity. In this
experiment, a speaker transmits an acoustic chirp signal spanning
from 300 Hz to 3 kHz.7 We use both the built-in microphone in
an iPhone 6 and HeadFi to record this echo. We then compute the
HPEAQ value of these two signals to measure their similarity.

We repeat this experiment using 54 pairs of headphones and
summarize the results in Figure 24(a). For comparison, we also
record the audio using the embedded microphone in an HP X360
laptop and compute the HPEAQ value (termed as PC in the fig-
ure). Note that HPEAQ values here are far away from 1 mainly
because the signal amplitudes are dramatically different. However,
the frequency responses of the signals are very similar. We observe
PC leads the board on the HPEAQ score, followed by CO, CC, SO,
and SC. IEM headphones achieve the lowest HPEAQ score. This
is because the IEM type of headphones go deeper into the ear and
thus can only capture those signals propagated through human
tissues and bones. In contrast, the over-ear (circumaural) and on-ear
(supra-aural) types of headphones can capture both over-the-air
and through-the-face-surface transmissions that get attenuated
less.
Mean opinion score (MOS). Besides the objective evaluation, to

7The frequency of human voice ranges from 300 Hz to 3 kHz [10].

better understand the HPEAQ discrepancy over the five types of
headphones, we further conduct a subjective evaluation on the
voice quality using MOS. MOS is another widely adopted metric in
evaluating the Quality of Experience in telecommunication engi-
neering. In our scenario, it represents the subjective opinion on the
overall quality of a voice call with one side of the user using HeadFi.
Each subject is asked to choose a score from a list to express his/her
opinion on the quality of the voice call.

OurMOS survey involves 26 participants (6 females and 20males)
with ages ranging from 24 to 60 years old. We chat with each par-
ticipant for a few minutes over the phone. During the process, we
employ five different types of headphones to talk to each participant.
These headphones include an AKG k701 circumaural open-back
headphones (CO), a JVC HA-RZ910 circumaural closed-back head-
phones (CC), a Grado SR60 supra-aural open-back headphones
(SO), a Jays U-JAYS supra-aural closed-back headphones (SC), and
an iHip Mr. Bud In Ear Model (IEM). We plug them into HeadFi
for voice calls. For comparison, we also employ the built-in micro-
phone in an iPhone 6 (CP) for voice calls in each experiment. At the
end of the call, we ask the participant to provide feedback on the
sound quality by choosing a score defined below (based on ITU-T
recommendations [9]):

Score Explanation
1 impossible to communicate
2 very annoying, a lot of noise and breaks
3 annoying, some noise can be perceived
4 good, sound clear
5 perfect, like face to face conversation

Figure 24(b) shows the MOS distribution for the five tested head-
phones using our design and the reference built-in microphone in
the smartphone. Note that the smartphone employs a dedicated au-
dio amplifier and active noise reduction circuits in the microphone
front-end [37, 47]; hence it achieves the highest average-MOS (4.8).
We observe that three (CO, CC, and CP) out of these five head-
phones achieve consistently high average-MOS (around or above
4), indicating that participants feel the voice communication quality
provided by our design is decent. The MOS of the remaining two
headphones (SC and IEM) drops slightly below 4.

On the other hand, we observe that the subjective MOS exhibits a
similar variation trend as the objective HPEAQvalues across the five
types of headphones (Figure 24(a)). However, the absolute values of
MOS and HPEAQ are not linearly correlated. For instance, we see a
significant HPEAQ drop on IEM headphones, while the MOS value
on this type of headphones is pretty much the same as the other
headphones. This is due to the non-linearity and complexity of the
human auditory system discussed in the literature for decades [56,
57]. The most frequently mentioned negative feedback from our
participants is the sound volume sometimes is a little bit low, and
occasionally the background humming noise can be heard. This
feedback is expected because the amplifier used in HeadFi (Texas
Instruments INA126) is not optimized for audio quality. This issue
can be addressed by using an amplifier designed purposely for audio
processing.
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7 RELATEDWORK

Touch-based gesture control. The touch-based gesture control
is usually realized by adding capacitive or resistive sensors into
headphones. These sensors typically measure changes in resis-
tance or capacitance to detect gestures such as touch. Many smart
headphones including Microsoft Surface Headphones [14], Sony
1000XM3 headphones [4], Zealot B21 headphones [3], and Bose
NC700 headphones [5] come with this function. Our system can
serve as a supplementary solution to conveniently transform those
“dumb” headphones into smart headphones.

Physiological sensing. There is a growing trend in embedding
sensors in headphones for physiological sensing. Heartbeat rate,
respiratory rate, and blood pressure can be monitored using electro-
cardiography (ECG), ballistocardiography (BCG), and photoplethys-
mography (PPG) [28, 51, 52, 58, 61]. Bui et al. adopted PPG sensors
and developed an in-ear system to measure the blood pressure [23].
Anh et al. proposed to customize an in-ear sensor to measure the
brain activities [45]. Rupavatharam et al. proposed to use the IMU
in a pair of dedicated designed headphones to monitor jaw clench-
ing [55]. Roddiger et al. developed a respiration rate monitoring
system using the embedded IMU [53]. There is also an open-source
multi-sensor integrated research platform, eSense, for earable com-
puting research [16]. These sensing systems and platforms rely on
dedicated sensors that add weight, require additional form factor
design, and incur higher cost and power consumption.

User authentication. The unique physical structure of the ear
canal can be used to authenticate users. High-frequency audio sig-
nals are bounced off the ear canal to serve as a unique feature for
authentication. Arakawa et al. proposed to use the Mel-frequency
cepstral coefficients (MFCC) instead of the frequency-domain trans-
fer function to achieve a higher authentication accuracy [21]. Hi-
gashiguchi et al. proposed to use the built-in microphones in a
cellphone to perform ear-related user authentications [34]. Akker-
mans et al. and Mahto et al. studied the feasibility of using inaudible
pilot tones for user authentications [20, 43]. Gao et al. designed an
ear-related user authentication system using commercially avail-
able headphones [33]. These techniques, however, rely heavily on
auxiliary and application-specific sensors placed around ear canal
that add size and even affect the quality of the audio output which
is the primary function of headphones. HeadFi instead bring intel-
ligence to “dumb” headphones without requiring extra sensors or
compromising the output signal quality.

8 DISCUSSION
HeadFi leaves room for further investigations, as discussed below:

The effect on user experience. HeadFi converts the audio output
into mono for sensing and such audio conversion may affect user
experience in some, if not all applications, as we discussed below.
𝑖) Voice call. As stereo itself is not supported for voice calls, HeadFi
does not affect the user experience on voice calls. 𝑖𝑖) Music playing.
The user experience can get compromised for stereotype music
since the audio output will be converted into mono by HeadFi. 𝑖𝑖𝑖)
User identification. HeadFi has limited influence on user experi-
ence as user identification takes a very short time and happens
occasionally in the time domain. 𝑖𝑣) Physiological sensing. These

applications such as heartbeat rate monitoring usually require con-
tinuous sensing. The user experience would thus be affected. To
minimize such impact, we include a switch (𝑆1 in Figure 8) in HeadFi,
allowing the user to turn on/off HeadFi as needed. A more compre-
hensive solution could be using a separate matching network to
independently balance the left and right drivers rather than balanc-
ing them as a single pair. This allows the user to retain the stereo
experience in the presence of HeadFi.

HeadFi vs. dedicated sensors. While adding dedicated sensors
may achieve a better user experience in some applications, it has
certain drawbacks as we discussed below. From the user’s point of
view, adding sensors to their headphones is not always feasible as
it requires hardware modifications (e.g., embedding sensors into
the headphones) which may break the internal structure, layout,
and circuit of the headphones. In contrast, HeadFi serves as a plug-
in peripheral wiring the headphones and pairing device (e.g., a
smartphone) without a need of any hardware modification. On the
other hand, from the manufacture’s point of view, adding dedicated
sensors to headphones usually incurs an extra cost to both head-
phone hardware and the assembly line. In contrast, HeadFi relies on
low-cost hardware that is as simple as two resistors, making it a cost-
effective solution. In addition, as most of the headphones owned
by users or shipped to the market nowadays are still non-smart
ones, HeadFi thus can serve as an important alternative solution
to existing smart headphone design by turning those non-smart
headphones on hand into smart ones, thereby paving the way for
realizing earable intelligence at an unprecedented scale.

9 CONCLUSION
We have presented the design, implementation, and evaluation of
HeadFi, a low-power peripheral to bring intelligence to headphones.
HeadFi employs the pair of drivers inside headphones as a versatile
sensor to enable new functionalities as opposed to adding embedded
sensors. This design can potentially upgrade existing non-smart
headphones into intelligent ones. We prototype HeadFi on PCB
board and demonstrate the potential of HeadFi by showcasing four
representative applications using 54 pairs of headphones.
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A APPENDIX
A.1 List of headphones in experiments
Table 7 is the list of headphones used in our experiments. Note
some headphones are discontinued. The estimated prices for the
discontinued headphones are sourced from Hifi-Shark [19]. Take
a departure from other consumer electronics like computers or
cellphones, headphones are built to last, especially the traditional
headphones. Many of our tested headphones are manufactured 20
years ago and they still work fine.
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No. Type Name Driver type Estimated Price ($) Year
01 Circumaural Sennheiser HD800S Dynamic 1,699.95 2015
02 Circumaural Verum Audio Verum Planar 349.00 2018
03 Circumaural Sennheiser HD58x Dynamic 150.00 2017
04 Circumaural Sennheiser HD650 Dynamic 499.95 2003
05 Circumaural Sennheiser HD540II Dynamic 200.00 1986
06 Circumaural Harman Kardon HARKAR NC Dynamic 299.95 2013
07 Circumaural JVC HA-RZ910 Dynamic 78.54 2014
08 Circumaural Equation RP-21 Dynamic 99.95 2010
09 Circumaural AKG K500 Dynamic 150.00 1991
10 Circumaural AKG K701 Dynamic 449.00 2005
11 Circumaural AKG K812 Dynamic 1,499.00 2013
12 Circumaural Monoprie M565C Planar 199.99 2018
13 Circumaural Focal Elear Dynamic 999.00 2017
14 Circumaural Focal Elex Dynamic 600.00 2017
15 Circumaural Sennheiser HD580 Dynamic 200.00 1991
16 Circumaural Sennheiser HD540G Dynamic 400.00 1988
17 Circumaural Hifiman Susvara Planar 6,000.00 2016
18 Circumaural Hifiman HE500 Planar 700.00 2010
19 Circumaural Audeze LCD2 Planar 995.00 2010
20 Circumaural Beyerdynamic T1 Dynamic 999.00 2009
21 Circumaural Sony MDR R10 Dynamic 15,000.00 1989
22 Circumaural AKG K240s Dynamic 39.99 2001
23 Circumaural Abyss AB-1266 Planar 6,000.00 2012
24 Circumaural Abyss AB-1266 Phi Planar 7,000.00 2017
25 Circumaural Kennerton Thror Planar 3,080.00 2018
26 Circumaural Hifiman HE6 Planar 1,000.00 2010
27 Circumaural Sennheiser HD580 Jubilee Dynamic 500.00 1995
28 Circumaural Sennheiser HD600 Dynamic 399.95 1997
29 Circumaural AKG K872 Dynamic 1,499.00 2016
30 Circumaural Audeze LCD3 Planar 1,945.00 2012
31 Circumaural Sennheiser HD224 Dynamic 49.00 1977
32 Supra-aural Koss Porta Pro Dynamic 49.99 1984
33 Supra-aural Grado SR60 Dynamic 69.00 1995
34 Supra-aural Koss KSC75x Dynamic 19.99 2004
35 Supra-aural BlueAnt Embrace Dynamic 200.00 2011
36 Supra-aural Equation Audio RP-15MC Dynamic 50.00 2004
37 Supra-aural Audio-Technica ATH-OR7 Dynamic 200.00 2009
38 Supra-aural Marshall Monitor II ANC Dynamic 319.99 2019
39 Supra-aural Spider PowerForce Dynamic 50.00 2012
40 Supra-aural Monoprice Pro Dynamic 29.99 2012
41 Supra-aural Musical Fidelity MF-100 Dynamic 199.00 2013
42 Supra-aural AKG Q460 Dynamic 129.90 2010
43 Supra-aural Beats Diamond Tears Dynamic 349.95 2012
44 Supra-aural Mackie MC-250 Dynamic 80.00 2019
45 Supra-aural Jays U-JAYS On Ear Dynamic 19.99 2017
46 In-ear Beats Heartbeats Dynamic 99.99 2012
47 In-ear Philips Fidelio S2 Dynamic 149.00 2013
48 In-ear Etymotic Research ER6i Armature 149.00 2004
49 In-ear SENFER DT6 Trio hybrid 35.00 2019
50 In-ear Beats urBeats Dynamic 99.99 2018
51 In-ear KEF M200 Duo dynamic 200.00 2013
52 In-ear Sennheiser HD405 Dynamic 35.00 2001
53 In-ear iHip Mr Bud Dynamic 3.60 2015
54 In-ear Insten In-ear Dynamic 2.99 2013

Table 7: List of headphones in our experiment.
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