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Figure 1: Challenges in robust gait recognition. (a) A Practical Failure Case: An illustrative example where a registered user is
rejected by the system because her current walking pattern deviates significantly from the enrolled ’normal’ data. (b) Diversity
of Covariates: Various daily factors (including clothing, carried items, and actions) introduce complex distortions to the radar
spectrograms, causing the recognition failure shown in (a). (c) Temporal Variability: Gait is not static; the violin plots show
significant natural fluctuations in walking velocity over a week, posing challenges for fixed-model systems.

Abstract
Gait recognition enables proactive and personalized smart home
interactions, but its long-term reliability is challenged by the non-
static nature of gait. Covariates like carrying items and clothing
induce a persistent domain shift that degrades traditional, static
models. To solve this, we introduce FlowGait, a mmWave-based
framework designed for robust, long-term adaptation. It combines
self-training with continual learning, allowing the model to daily
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align with a user’s evolving gait by learning from readily available
unlabeled data. It features a specialized transformer network for
radar spectrogram analysis and a novel two-stage labeling algo-
rithm that leverages the gait’s hierarchical nature to assign pseudo-
labels to the unlabeled data accurately. Evaluated on three chal-
lenging datasets from 47 volunteers (covering 12 gait-covariates,
11 routes, and two weeks), FlowGait achieves high accuracies of
94.8 (cross-covariate), 98.6% (cross-route), and 95.5% (cross-day).
Notably, for the long-term dataset, it reduced performance decay
from 13.6% to just 1.4%, demonstrating its real-world robustness.
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1 Introduction
Gait, a unique walking pattern of each individual, provides a re-
liable biometric identifier. Smart home systems can leverage this
trait to distinguish between residents and deliver a range of cus-
tomized automations. For instance, if a child’s gait is identified
nearing a designated dangerous zone, such as a staircase or balcony,
the system can initiate a series of automated responses: locking
the door, alerting the parents, and minimizing the possibility of po-
tential household accidents. Similarly, once the system recognizes
a user’s gait as they enter the bedroom, it can activate a unique
welcome routine, such as setting the preferred temperature, ad-
justing the lighting, or playing their dedicated music. Within the
smart home system, the purpose of gait recognition is to provide
an interactive environment that is truly unobtrusive, proactive,
and personalized.

As an emerging biometric modality, gait recognition has been
explored using various sensors, including cameras [11, 19, 32, 49],
Wi-Fi [29, 47, 59], and ultrasound [33, 63]. However, these sensors
suffer from some limitations, including privacy issues, limited reso-
lution, and being unfriendly to pets. In contrast, millimeter-wave
(mmWave) radar offers distinct advantages: it is high-resolution,
non-contact, robust to lighting variations, and privacy-preserving.
These qualities make mmWave radar an ideal candidate for indoor
recognition tasks.

However, a major challenge is that gait is not as stable as bio-
metrics like the face or fingerprints. For example, wearing a heavy
coat restricts a person’s natural motion, resulting in a distinct gait
pattern characterized by a stiffer posture and suppressed arm swing.
In the feature space, this physical adaptation translates to a domain
shift, frequently causing the recognition system to fail, as illus-
trated in Fig. 1(a). This variability is compounded by numerous
other factors, including carrying items, clothing, and phone-related
activities (like calling). These factors are collectively known as gait
covariates. Furthermore, variations in gait can stem from walk-
ing routes and temporal factors arising from a person’s mood
[15, 40], fatigue [22, 25], or health status [6, 61]. Fig. 1(b) shows
the mmWave spectrograms under different gait covariates, which
exhibit significant variations. Fig. 1 (c) illustrates significant day-to-
day fluctuations in the velocity distribution of the same user over
one week. Therefore, the major challenge for practical gait recog-
nition lies in overcoming the performance degradation caused by
this inherent instability during long-term, real-world deployment.

Existing methodologies typically involve feature extraction from
radar-generated point clouds [13, 26, 38, 54], micro-Doppler spec-
trograms [44, 53], or heatmaps [56]. While these methods have
demonstrated high performance, their validation typically relies

on gait data collected over short durations in controlled laboratory
environments. To handle gait variations, some methods [45, 64]
employ domain adaptation techniques to learn domain-invariant
features. This strategy is impractical for real-world deployment
because it requires collecting labeled data multiple times. Moreover,
its ‘train-once’ paradigm cannot account for the longitudinal nature
of gait, given that a finite training set can never fully capture a
user’s future variability. Consequently, long-term gait adaptation
remains a largely unexplored gap between research and practical
application.

To overcome these challenges, we propose FlowGait, a novel
mmWave-based gait recognition framework that integrates self-
training and continual learning for robust long-term adaptation.
Our approach is founded on the hypothesis that gait evolves as a
continuous flow. This principle enables a practical enrollment pro-
cess: We collect an enrollment-labeled dataset from each user once
to fine-tune a general model into a personalized one. During daily
operation, the system passively observes new, unlabeled walks as
gaits naturally change. This incoming data is used to continually
refine the model, ensuring it stays synchronized with each user’s
evolving patterns. FlowGait is effective not only for long-term
adaptation but also for recognition across diverse covariates and
routes, as the system progressively learns a wide range of gait pat-
terns from simple to complex. However, there are three challenges.

A prerequisite for self-training is a robust feature recognition
network whose extracted features satisfy the cluster assumption
[74] across different gait covariates. This means that features from
the same person remain tightly clustered despite variations in their
gait. A key challenge is learning robust features from the uniquely
structured mmWave radar heatmaps. These heatmaps are highly
elongated and strip-like, featuring a large velocity dimension (>100
pixels) in contrast to small range and time dimensions (10-20 pix-
els). This elongated structure fundamentally limits the efficacy of
standard CNNs, whose local kernels struggle to model the long-
range dependencies essential for capturing a holistic gait pattern.
To address this, we introduce a Transformer-based network specif-
ically designed for the strip-shaped heatmaps. Its self-attention
mechanism is designed to establish a global receptive field, making
it suited to modeling the holistic patterns within these elongated
heatmaps and leading to superior cross-domain performance.

The second challenge is ensuring data availability for continuous
learning, which requires accurately labeling incoming data. A com-
mon approach is pseudo-labeling, where the model assigns labels
to high-confidence predictions in the unlabeled set. However, this
method faces a fundamental trade-off. A high confidence thresh-
old ensures label accuracy but misses diverse or novel samples,
while a low threshold captures more diversity but risks introducing
labeling errors. To resolve this issue, we introduce a two-stage
step-traversal labeling algorithm. We define traversal as a user’s
complete journey from an origin to a destination, composed of a se-
ries of discrete steps. Traversal and step are two hierarchical levels
of walking; a step is the atomic unit of walking, while a traversal is a
complete walking session. Our algorithm first assigns a preliminary
label to each step. Then, instead of relying on individual step confi-
dence, it evaluates the collective confidence of the entire traversal
using a novel traversal labeling criterion. This approach enables the
accurate labeling of low-confidence steps within a high-confidence
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traversal, thereby expanding the training data with diverse samples
without sacrificing accuracy.

The last challenge comes from learning continuously from an
ever-growing stream of unlabeled data, which introduces two prob-
lems. First, constant data accumulation increases storage require-
ments and training durations. Second, training exclusively on new
data leads to catastrophic forgetting—the loss of previously acquired
knowledge. To address this, we employ a Core-set mechanism. This
process operates on a daily cycle: new unlabeled data is used for
self-training, and high-confidence pseudo-labeled samples are in-
tegrated into the existing training pool. Crucially, this combined
pool is then distilled into a fixed-size core set. By capping the data
volume, this approach ensures stable, predictable training times.
Simultaneously, it mitigates catastrophic forgetting by replaying
the core set in subsequent training iterations.

To validate our proposed system, FlowGait, we collected three
comprehensive datasets with 47 volunteers. (1) Cross-covariate
Dataset: involving 12 distinct gait covariates, with only “Normal
Walking” data used for enrollment. (2) Cross-routes Dataset: span-
ning 11 different routes, with only “Straight Walking” data used
for enrollment. (3) Cross-day Dataset: collected over two weeks for
long-term evaluation, with only “Day-1” data used for enrollment.
(4) Demographic Dataset: involving 10 elderly participants and 6
children to assess inclusivity. On these respective tasks, FlowGait
achieved recognition accuracies of 94.8%, 98.6%, and 95.5%, respec-
tively. Notably, for the long-term task, FlowGait reduced perfor-
mance decay from 13.6% to just 1.4%, demonstrating its real-world
robustness. In the demographic evaluation, the system exhibited
exceptional stability, achieving 97.7% and 97.5% accuracy for the
elderly and child groups, respectively. Furthermore, in simulated
family unit scenarios (e.g., Multi-Generation households), the accu-
racy exceeded 99%, attributed to distinct inter-group gait differences.
To promote further research, our datasets and code are publicly
available1. Validation on a consumer-grade laptop demonstrated
the system’s ability to perform real-time inference, with model
updates completing in approximately 6 minutes. In summary, the
main contributions of FlowGait can be summarized as follows:

• We propose FlowGait, a long-term, self-learning mmWave-
based gait recognition framework designed to adapt to real-
world covariates. To the best of our knowledge, FlowGait is
the first millimeter-wave gait recognition system designed
for long-term deployment.

• We introduce a Transformer-based feature extraction net-
work specifically designed for the strip-shaped mmWave
heatmaps, achieving SOTAperformance on cross-covariances
recognition using a public dataset.

• We propose a two-stage step-traversal labeling algorithm. By
jointly evaluating the labels and confidences at both the step
and traversal levels, it achieves more accurate annotation of
unlabeled data.

• We implement FlowGait using commercial off-the-shelf (CO-
TS) mmWave radar and evaluate its performance on three
datasets: a cross-covariate dataset, a cross-route dataset, and
a cross-day dataset. Using only the NormalWalking, Straight
Walk, or Day-1 data as the labeled set, our method achieved

1https://github.com/DQ-WDQ/FlowGait

recognition accuracies of 94.8%, 97.9%, and 96.6%, respec-
tively. Critically, it demonstrated superior robustness for vul-
nerable groups (elderly and children) and family scenarios
(>99%), proving its viability for diverse smart home applica-
tions.

2 Related Work
2.1 Sensor-based Gait Recognition
A variety of sensors—including cameras, wearable devices, Wi-Fi,
and ultrasound—are employed to capture distinctive gait signa-
tures. Vision-based methods, for instance, typically extract bod-
ily silhouettes and skeletal data from image frames, which are
then processed by a neural network to derive gait-specific fea-
tures [11, 19, 32, 49, 73]. Consequently, much of the research in this
domain has focused on the challenges of cross-covariate [28, 31, 75],
cross-view[9, 62], and in-the-wild[18, 48, 67] gait recognition. How-
ever, despite their notable success, the inherent privacy concerns
associated with these methods render them unsuitable for deploy-
ment in private environments such as homes. Wi-Fi-based gait
recognition has garnered widespread attention due to the ubiquity
of Wi-Fi signals [46, 59, 68, 69]. The majority of these approaches
extract features from Channel State Information (CSI), employing
either traditional feature engineering or deep learning-based tech-
niques. Recently, several studies have also begun to investigate the
impact of walking direction [70, 71] and non-gait behaviors [65]
on Wi-Fi-based gait recognition. However, Wi-Fi-based approaches
are highly sensitive to the environment and struggle to handle
multi-person scenarios. Other gait recognition approaches rely on
specialized hardware, such as wearable accelerometers or floor-
mounted sensors. For instance, Li et al. [30] propose a system using
a floor-mounted Triboelectric Nanogenerator (TENG) that identi-
fies gaits via electrical signals. However, the reliance on wearable
devices or the need for intrusive under-floor installation for such
sensors can limit their practical applicability and user acceptance.
Acoustic signals represent another modality for gait recognition.
For example, Xu et al. [63] analyze the Doppler shifts in acoustic
signals reflected from a user’s body, while Altaf et al. [1] focus on
the distinct sounds of footsteps for identification. However, these
acoustic-based approaches also face struggles to distinguish be-
tween multiple individuals. Moreover, the performance of acoustic
methods in general is highly susceptible to interference from ambi-
ent noise, which limits their real-world robustness.

2.2 mmWave-based Gait Recognition
Millimeter-wave (mmWave) technology is gaining significant trac-
tion for many applications [12, 23, 24, 34, 36, 37, 55, 57, 58, 72],
owing to its high-precision range and velocity measurements and
increasing affordability. Early research on gait recognition explored
various data representations. Several studies employed deep neural
networks to extract features from micro-Doppler spectrograms to
recognize single or multiple individuals [44, 53]. And some works
leveraged the spatiotemporal information from 4D radar point
clouds for user identification and re-identification [13, 26, 38, 54].
Other notable approaches include modeling the movement of lower
limbs [66], performing cross-modal vision-RF ReID [8], synthe-
sizing mmWave data from video [20], and using Range-Doppler
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Figure 2: Architecture of FlowGait. The system utilizes a self-training loop to adapt to unlabeled daily data. The Step-Traversal
module (right) aggregates predictions from all steps within a single walking event (Traversal-id*) to filter out unreliable samples.
This ensures that only high-confidence pseudo-labels (Plabels∧) are generated and fed back to update the Transformer model.

heatmaps with a "step" as the sample unit [56]. However, a common
limitation in much of the prior works is the lack of consideration for
real-world deployment, such as recognition across different gait co-
variates (e.g., carrying a bag), walking routes, or over extended time
periods (cross-day). Recently, efforts have begun to address these
domain shifts. For instance, Meng et al. [39] utilized contrastive
learning on point clouds for deployment in unseen domains, while
Pinyoanuntapong et al. [45] used a semi-supervised method on
micro-Doppler data to mitigate these shifts. Nevertheless, these re-
cent solutions have their own drawbacks. The method by [45], for
example, defines an entire walking pass as a single sample, which
is impractical in scenarios where users may turn or alter their path
midway. Furthermore, this approach requires several days of labeled
data for effective training, increasing the data collection burden. In
summary, the current literature lacks a gait recognition system capa-
ble of robust, long-term deployment following a single enrollment.
Addressing this limitation, our work proposes a millimeter-wave
gait recognition system oriented towards achieving both long-term
operational stability and cross-covariate robustness.

3 PRELIMINARY
In this section, we first introduce the principles of mmWave radar
perception and how gait recognition works. Following that, we
describe the human factors that influence gait.

3.1 Gait Recognition in HCI
While traditional biometrics like face and voice recognition prior-
itize accuracy, deploying sensing technologies in domestic envi-
ronments requires a deeper consideration of user experience and
social norms. mmWave gait recognition emerges as a compelling
alternative, offering a paradigm shift from active authentication
to seamless, privacy-preserving interaction. Its core advantages
include:
Unobtrusive, Passive Sensing. Unlike methods requiring active
cooperation (e.g., facing a camera), gait recognition is completely

passive. Users simply walk naturally within the radar’s range, elim-
inating the need to pause or pose, thus ensuring a seamless user
experience.
Human-Centered Privacy. HCI literature emphasizes that ac-
cepting home sensing technology relies on the trade-off between
perceived utility and privacy intrusion [2]. Our choice of mmWave
radar alignswith "privacy-enhancing sensing," as studies showusers
express significantly lower anxiety towards abstract RF signals com-
pared to cameras [14]. Furthermore, addressing the "Contextual
Integrity" [41] of the home, our system ensures that gait data—a
highly personal biometric—remains local and is used strictly for
user-authorized interactions, preventing context-collapse where
data might be misused by third parties.
Robust Anti-Spoofing. While visual and fingerprint systems can
be deceived by masks or films, mmWave captures the dynamic,
holistic posture of an individual’s walk. This complex biometric
signature is extremely difficult to forge, offering superior security.
From Passive Tools to Proactive Environments. These advan-
tages enable a transition to "Ambient Intelligence." Rather than
awaiting explicit commands (e.g., "Siri, play music"), the environ-
ment proactively senses and anticipates needs. As a user moves be-
tween rooms, the system can provide "follow-me" services—seamles-
sly transferring media or adjusting lighting—while maintaining
continuous, non-intrusive authentication. Beyond identification,
the multi-purpose sensor simultaneously monitors gait health (e.g.,
for elderly care), creating a holistic, secure, and responsive living
space.

3.2 Principles of mmWave Radar Sensing
mmWave radar can effectively estimate the range and velocity of
a target. A typical radar system includes transmitting (Tx) and
receiving (Rx) antennas. The Tx antenna emits a linearly frequency-
modulated signal, known as a chirp. This signal reflects off a target,
and the resulting echo is captured by the Rx antenna. Inside the
radar, a mixer combines the received and transmitted signals to
generate an Intermediate Frequency (IF) signal. The frequency of
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(a) Raw range-Doppler heatmaps (b) Clean range-Doppler heatmaps (c) Range-Doppler stack (d) micro-Doppler

Figure 3: Visualization of Different Radar Spectrograms.

the IF signal (𝑓𝐼𝐹 ) is directly proportional to the target’s range
(d) due to the signal’s time-of-flight. The range is calculated as:
𝑑 = 𝑓𝐼𝐹𝑐/2𝑆 , where 𝑆 is the chirp’s frequency slope and 𝑐 is the
speed of light. For a moving target, the slight change in its range
between consecutive chirps induces a phase shift (𝜔) in the IF
signal. This phase difference, often called the Doppler phase shift,
is proportional to the target’s radial velocity (𝑣). The velocity is
determined by: 𝑣 = 𝜆𝜔/4𝜋𝑇𝑐 , where 𝜆 is the wavelength, and 𝑇𝑐 is
the time interval between chirps.

A target’s motion features are primarily extracted from two
key representations: the Range-Doppler (RD) heatmap and the
micro-Doppler (mD) spectrum. An RD heatmap is generated by
applying a two-dimensional Fast Fourier Transform (FFT) to the
raw Intermediate Frequency (IF) signal (I). The resulting heatmap
(𝐻 ) maps the target’s range and velocity distribution across range
bins and Doppler bins at a single frame. To capture dynamic mo-
tion, such as a full gait cycle, these individual heatmaps are stacked
over time (𝑇 ) to form an RD Stack. From RD Stack, the mD spec-
trogram is derived by summing along the range dimension. This
spectrogram visualizes the temporal evolution of the target’s ve-
locity distribution. While the RD sequence provides richer data for
superior gait recognition, the mD spectrogram is more intuitive
and visually interpretable. Fig. 3(c) visualizes a sample RD Stack,
and Fig. 3(d) contrasts the distinct mD spectrograms produced by
different targets, underscoring their utility in identifying unique
gait patterns. In this paper, we use the RD Stack for gait recognition
but employ micro-Doppler spectrograms for visualization.

3.3 Factors that Affect Human Gait
Human gait is an inherently complex biomechanical process that
adapts to a variety of external factors. It is continuously influ-
enced by conditions such as clothing, carrying behaviors, and
phone-related actions (e.g., calling). Collectively, these influen-
tial factors are termed gait covariates. For instance, restrictive
apparel like a thick coat can impede the natural articulation of knee
and elbow joints, resulting in attenuated stride length and limb
movement. Similarly, carrying an object such as a suitcase disrupts
the body’s kinematic symmetry, often suppressing the arm swing

on the carrying side and thereby degrading overall gait stability.
These variations manifest as distinct patterns in the micro-Doppler
spectrograms captured by mmWave radar, as illustrated in Fig. 1(b).
The spectrograms reveal how different covariates alter the signal’s
distribution. For example, the signature corresponding to rolling a
suitcase exhibits a compressed and more chaotic structure, which is
indicative of diminished limb swing and compromised gait stability.

The radar echo is also critically affected by other factors. The
user’s walking route is a dominant factor, with the angle of tra-
jectory relative to the radar being especially critical. Since radar
sensors measure the radial component of a target’s velocity, kine-
matic details from limb motion are best resolved when the subject
moves directly along the radar’s boresight. For oblique routes, the
sensor captures only a projection of the true velocity vector, leading
to an incomplete representation of the motion. Furthermore, com-
plex maneuvers like turning introduce significant non-stationarity
into the signal, as the velocity and angle of various body parts
change dynamically.

Finally, the temporal dimension introduces inherent, long-
term variability. An individual’s physiological state (e.g., health[6,
61], fatigue[22, 25]) and affective state (i.e., mood[15, 40]) are not
static, leading to natural fluctuations in gait over time. This in-
trinsic, longitudinal variability means that achieving robust gait
recognition over extended periods remains a significant challenge,
even when external covariates are meticulously controlled.

4 Overview
4.1 Problem Definition
This paper presents a mmWave-based gait recognition system de-
signed for robust, long-term deployment. We collected three com-
prehensive datasets with 31 volunteers. (1) Cross-covariate Dataset:
involving 12 distinct gait covariates, with only “Normal Walking”
data used for enrollment. Cross-route Dataset: spanning 11 different
routes, with only “Straight Walking” data used for enrollment. (3)
Cross-day Dataset: collected over two weeks for long-term evalua-
tion, with only “Day-1” data used for enrollment. In all experimental
settings, the enrollment data constitutes the sole source of labeled
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information; all other data remains unlabeled. Our system is de-
signed to leverage this small labeled set, along with a portion of
the unlabeled data, to perform recognition on the remaining data.

4.2 FlowGait Architecture
As illustrated in Fig. 2, FlowGait is primarily composed of three
components:

Data Preprocessing: The data preprocessing module transforms
the raw radar signals into sets of samples, where each set constitutes
a complete traversal consisting of multiple steps.

Step-level Gait Recognition: The Online Model is a Transformer-
based feature extractor, specifically designed for the long, strip-
shaped mmWave heatmaps. It generates a feature embedding and
a predicted ID for each step sample.

Step-Traversal Self-training: The module features a two-stage
step-traversal labeling algorithm generating pseudo-labels for unla-
beled data. This module also includes a continual learning pipeline
for long-term deployment.

5 Data Preprocessing
This section details the process for generating the network’s stan-
dard input from raw radar IF signals. The process involves two
stages: first, converting the raw signals into a sequence of pre-
processed heatmaps; and second, segmenting these heatmaps into
discrete, step-level samples.

5.1 Heatmap Generation and Target Extraction

Raw Heatmap Generation. As described in Section 3.2, we first
generate a Range-Doppler heatmap by applying Range-FFT and
Doppler-FFT to the IF signal. During the Doppler-FFT stage, the
Moving Target Indication (MTI) algorithm [4] is employed to sup-
press static clutter. The resulting RD heatmap is a two-dimensional
matrix where higher values indicate a stronger signal from a po-
tential target at a specific range and velocity. A typical heatmap,
as shown in Fig. 3(a), is composed of the dynamic target signal,
residual static clutter, and background noise.

Background Filtering. To remove background noise, we first
apply Min-Max normalization to each Range-Doppler heatmap,
scaling all values to [0, 1]. Next, a fixed threshold is used to filter
the noise: pixel values below this threshold are zeroed out, while
those above are retained. This approach is chosen over CFAR-based
methods because it ensures that all bins containing velocity in-
formation are preserved [56]. The filtered heatmap is shown in
Fig. 3(b).

Target Clustering and Tracking. To isolate the target, the filtered
heatmap is further processed using clustering and tracking. First,
we employ the DBSCAN algorithm [17] on each frame to group
points based on density in the range-Doppler space, identifying
dense regions as targets and classifying sparse points as noise. The
centroid of the densest cluster is designated as the target center,
(𝑟0, 𝑣0). Subsequently, a Kalman filter[60] is used to smooth the tra-
jectory of these centers across frames, yielding a refined coordinate
(𝑟 𝑖𝑐 , 𝑣𝑖𝑐 ) for each frame 𝑖 . Finally, we crop the heatmap around this
smoothed coordinate to retain only the relevant information near

Figure 4: Step Segmentation. The white solid line represents
the estimated torso velocity. The dashed lines indicate the
local maxima of the velocity, which are used for segmenta-
tion. The labels "traversal-1", "traversal-2", ... are the traversal
numbers, and 1○, 2○, ... are the step numbers.

the target:

𝑅𝐷𝑖 =

{
(𝑟, 𝑣)

��|𝑟 − 𝑟 𝑖𝑐 | <
𝑠

2
and |𝑣 | < 𝑣𝑚

}
, (1)

where 𝑠 and 𝑣𝑚 are the range and velocity thresholds, respectively.
We adopt the values as calculated in [56]. Finally, we stack the
cropped RD heatmaps from a complete walking process to generate
a range-Doppler Stack (RDStack):

RDStk = {𝑅𝐷𝑖 | 1 ≤ 𝑖 ≤ 𝑁𝑇 } , (2)

where 𝑁𝑇 is the number of frames, is determined by the walking
duration. Fig. 3(c) shows a sample of an RDStack.

5.2 Step Segmentation
Once a complete gait sequence (RDStack) is acquired, it must be
segmented into standardized, fixed-length samples for network
input. While some methods use longer spectrograms spanning sev-
eral steps—an approach suitable for CNNs—this can be problematic.
For example, abrupt stops or turns can create anomalous patterns
in the spectrogram that degrade recognition performance. To mit-
igate this, we adopt a step-level segmentation strategy. Using a
single gait step as the fundamental input unit allows our system to
generate a prediction for each step, yielding greater robustness to
irregular movements. We called a complete RDStack a traversal
as a continuous walk from a start point to an endpoint, composed
of multiple steps. A traversal begins when a user starts walking
or enters a monitored area and ends when they stop or exit. Sharp
turns split a single walk into two separate traversals. Once a traver-
sal is fully identified, we then perform step segmentation to isolate
the individual steps within it.

To further enhance model performance, we standardize each
sample by aligning it to a consistent starting phase within the
gait cycle, thereby reducing intra-class variation. The key to this
alignment is identifying step boundaries from the subject’s velocity
profile. We estimate the torso velocity using the percentile method
proposed in [52], which defines it as the weighted median of ve-
locities in the micro-Doppler spectrum. We first generate the mD
heatmap by summing the RDStack along the range dimension:

𝑀𝐷 =
∑︁
𝑟

𝑅𝐷𝑆𝑡𝑘 [:, 𝑟 , :] . (3)
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Figure 5: Receptive Fields for CNN, analogous to viewing a
long scroll painting through a square window.

Then, we estimate the torso velocity (𝑣𝑡𝑜𝑟𝑠𝑜 ) using the percentile
method:

𝑣torso =

{
𝑣𝑖 |

∑𝑣𝑖
𝑘=𝑣min

MD(𝑖, 𝑘)∑𝑣max
𝑘=𝑣min

MD(𝑖, 𝑘)
= 0.5

}
. (4)

We then identify the start of each gait step by locating the time
of the minimum value in the estimated torso velocity sequence.
This starting time, denoted as 𝑡𝑚𝑖𝑛 , is used to extract an individual
sample (RDSample) as follows:

𝑅𝐷𝑆𝑎𝑚𝑝𝑙𝑒 = 𝑅𝐷𝑆𝑡𝑎𝑐𝑘 [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑖𝑛 +𝑇, :, :], (5)

where 𝑇 is the fixed temporal length of the sample. In our configu-
ration, we set 𝑇 = 20 frames, which corresponds to a duration of 1
second.

We similarly utilize torso velocity for traversal segmentation. Sig-
nificant fluctuations in torso velocity occur during walking pauses
or sharp turns. This happens because mmWave radar measures ra-
dial velocity; therefore, when the target’s walking direction changes
relative to the radar, the measured torso velocity changes accord-
ingly even if the walking speed remains constant. Specifically, we
split a sequence into two separate traversals whenever the torso
velocity fluctuates by more than 30%.

6 Step-level Gait Recognition
In this section, our goal is to design a feature extraction network
for the RDStack that generalizes well. This requires the network to
meet two criteria: it must accurately recognize gait across differ-
ent covariates for unseen users, and features from the same user
must form tight clusters in the feature space. The core challenge
stems from a structural mismatch between conventional models
and the input data. As shown in Fig. 5, range-Doppler heatmaps are
elongated, with a dominant velocity dimension and compact range
and time dimensions. The architectural design of traditional CNNs,
defined by limited and isotropic receptive fields, is fundamentally
mismatched with this data structure. This inherent bias towards
local feature extraction prevents them from modeling the crucial
long-range dependencies in Doppler velocity patterns, leading to
suboptimal performance. To overcome this challenge, we introduce
a feature extraction network based on a two-layer Transformer ar-
chitecture, which is inherently adept at modeling such long-range

Figure 6: Heatmap Patching. We segment the heatmap into
𝑁 =𝑊 /𝐻 square patches, using the range dimension(𝐻 ) as
the side length for each patch.

contextual relationships. This chapter details our proposed method-
ology, including the dataset selection for pre-training, the archi-
tecture of our FlowGait Model, and a comprehensive performance
evaluation.

6.1 FlowGaitModel
To accommodate the long strip shape of the heatmap, we propose
a Transformer-based feature extraction network for millimeter-
wave heatmaps, inspired by the Vision Transformer (ViT)[16] and
its adaptations for video recognition[3]. As depicted in Fig. 7, our
model processes an input tensor of size [𝑇,𝐻,𝑊 ], which repre-
sents 𝑇 consecutive range-Doppler heatmaps of size [𝐻,𝑊 ]. The
structure of FlowGait is shown in Fig. 7.

Intra-Frame Feature Extractor. Our feature extraction process
begins by partitioning each range-Doppler heatmap to model its
internal spatial relationships. To account for the heatmap’s elon-
gated structure (where velocity dimension𝑊 ≫ 𝐻 ), we divide it
into 𝑀 = 𝑊 /𝐻 square patches of size 𝐻 × 𝐻 . Following the ViT
framework, these patches (𝑥 ∈ R𝐻×𝐻 ) are linearly projected via
a matrix E and flattened into a 1D token sequence. A learnable
classification token (𝑧𝑐𝑙𝑠) is prepended, and a position embedding
(𝑝) is addeed to preserve spatial information:

𝑧 = [𝑧𝑐𝑙𝑠 ;E𝑥1;E𝑥2; ...;E𝑥𝑀 ] + 𝑝. (6)

The resulting tokens (𝑧 ∈ R𝐷 ) are then processed through an L-layer
Transformer encoder. As shown in Fig. 7(b), each layer sequentially
applies a Multi-head Self-Attention (MSA) mechanism and a Mul-
tilayer Perceptron (MLP) module, with Layer Normalization (LN)
preceding each block and residual connections applied after:

𝑦𝑙 = MSA(LN(𝑧𝑙 )) + 𝑧𝑙 , (7)

𝑧𝑙+1 = MLP(LN(𝑦𝑙 )) + 𝑦𝑙 . (8)
The final output of the range-velocity encoder is the state of the
classification token from the last layer, denoted as ℎ = 𝑧𝐿

𝑐𝑙𝑠
∈ R𝑑 .

Inter-Frame Relation Encoder. To model the temporal relation-
ships, the frame-level feature vectors {ℎ𝑖 } are first concatenated. A
new, learnable classification token 𝑓𝑐𝑙𝑠 is then prepended to the se-
quence. Similar to the spatial encoder, we apply a linear projection
E to each feature vector and add a position embedding 𝑝 to retain
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Figure 7: FlowGait Model. FlowGait model consists of two transformer encoders in series. The first encoder interacts between
tokens extracted from the same temporal index to produce a latent representation per time index. The second transformer
models interactions between time steps.

Table 1: Combined Evaluation for Top-1 (%) and mAP. Best results are in bold

Top-1(%)/mAP NM BP SB CA TX avg
RDGait 96.3/0.72 90.1/0.70 86.4/0.68 87.5/0.70 82.3/0.66 88.5/0.69
GaitSet 91.5/0.35 71.3/0.31 71.5/0.31 74.7/0.31 61.0/0.29 74.0/0.31
mD-ViT 87.4/0.64 79.1/0.59 80.3/0.59 76.6/0.59 75.6/0.56 79.8/0.59

FlowGait Model (ours) 97.2/0.83 91.3/0.76 91.1/0.74 92.6/0.75 86.2/0.67 91.7/0.75

temporal order:

𝑓 = [𝑓𝑐𝑙𝑠 ;Eℎ1;Eℎ2; ...;Eℎ𝑇 ] + 𝑝. (9)

This aggregated sequence 𝑓 is then processed by a temporal Trans-
former encoder consisting of 𝐿𝑇 layers. This encoder models the
interactions between tokens across different temporal steps. Finally,
the state of the classification token from the temporal encoder’s
output is passed to a single-layer MLP for final classification.

Our model FlowGait can be categorized as a "late fusion" strat-
egy for temporal information. It operates by first extracting per-
frame spatial-velocity features and subsequently aggregating them
to form a final representation for classification. In contrast to CNN-
basedmethods, FlowGait leverages a self-attentionmechanism that
computes the interrelationships and relative importance between
every patch in the heatmap. This allows it to capture long-range de-
pendencies across distant regions, thereby achieving a truly global
receptive field.

6.2 Preliminary Evaluation of FlowGait Model
6.2.1 Dataset. To validate the model’s generalization performance,
we perform cross-covariate gait recognition on unseen users using
the RDGait dataset[56]. RDGait dataset comprises recordings from
125 subjects across two scenarios and five gait covariates: normal

walking (NM), backpack (BP), shoulder bag (SB), calling (CA), and
texting (TX). The raw data is processed into tensors with dimen-
sions of [20,11,220] corresponding to time, range, and velocity. For
our experiments, we exclusively use data from Scenario 2, which
includes 110 subjects. This set is partitioned into a training set of
100 subjects and a test set of the remaining 10, ensuring strict sub-
ject independence. The model is trained on all gait covariates from
the training set and is not fine-tuned on the test set. We structure
the test set into gallery and query sets. The gallery set for each test
subject is composed of 20% of their normal walking (NM) data. The
query set contains the remaining 80% of their NM data plus all of
their data from the other four covariates (BP, SB, CA, TX).

6.2.2 Evaluation Metrics. During testing, feature vectors are ex-
tracted for all samples in the query and gallery sets. For each query,
we rank all gallery samples based on their Euclidean distance to
the query vector, where smaller distances indicate higher similarity.
The performance is quantified using Top-1 Accuracy and mean
Average Precision (mAP):

• Top-1Accuracy. The proportion of querieswhere the highest-
ranked sample is a correct match.
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(a) Gait Recognition Accuracy for Unseen Users.

(b) t-SNE Visualization of Features from Various Models.
Different colors represent different IDs.

Figure 8: Performance and Feature Visualization of the
FlowGaitModel.

• Average Precision (AP). For a given query, the average of
precision values is calculated at the rank of each correctly
matched gallery sample.

• Mean Average Precision (mAP). The mean of AP scores
computed over all queries.

6.2.3 Baselines. We selected several networks for visual gait recog-
nition and mmWave gait recognition as our baselines, as follows:

• RDGait[56]. RDGait is a state-of-the-art millimeter-wave
gait recognition network that uses a CNN and a carefully
designed attention-based LSTM.

• GaitSet[10]. A classic visual gait algorithm, using a CNN
for feature extraction and set-pooling for aggregation.

• mD-ViT. A standard ViT model to extract features from
micro-Doppler spectrograms.

6.2.4 Overrall Performance. Fig. 8(a) shows the top-1 accuracy
and mAP of the cross-covariate recognition for unseen users. The
results show that our proposed model, FlowGaitModel, achieves
a Top-1 accuracy of 91.7% and an mAP of 0.75, performing the

best among all baseline methods. In contrast, the SOTA mmWave
gait recognition method, RDGait, achieves a Top-1 accuracy of
88.5% and an mAP of 0.69. Our method improves upon RDGait
by 3.2% and 0.06, respectively. An approach directly adapted from
GaitSet performs poorly (74.0% and 0.31), which indicates that
directly applying methods from the visual domain is not suitable.
Additionally, the method using micro-Doppler signatures yields a
lower accuracy (79.8%), which suggests that range-Doppler stacks
contain more information and offer higher resolution than micro-
Doppler spectrograms.

Table 1 details the specific accuracy and mAP for each gait co-
variate. FlowGait achieves the highest recognition accuracy across
all covariates. Notably, for the four simpler covariates—normal
walking(NM), backpack(BP), shoulder bag(SB), and calling(CL)—the
accuracy of each exceeds 90%. This satisfies our requirement for
feature robustness when gait variations are not very large. As the
accuracy indicates, the texting (TX) scenario is the most challeng-
ing. This is because texting while walking disrupts a person’s pace
and balance, causing a significant deviation in their gait pattern.

Fig. 8(b) visualizes the feature spaces of different models using t-
SNE[35], with colors denoting subject IDs. Among them, FlowGait
generates the most compact and discriminative feature clusters,
demonstrating superior feature separation. Interestingly, we discov-
ered that while gaits towards and away from the radar form a unified
cluster during training, they naturally split into two sub-clusters in
the test set. We attribute this to the differing radar cross-sections
(RCS) of the body in opposing directions. Based on this, we modified
our network to treat each direction as a separate identity during
training and testing. This ensures each identity forms a single, tight
cluster, and we merge the results only at the final output.

7 Step-Traversal Self-training
The reliability of gait recognition is often compromised by its high
variability compared to static biometrics like faces or fingerprints.
Real-world factors—from the clothes someone wears to their level
of fatigue—can significantly alter their walking pattern, leading
to critical identification failures. Our work confronts this problem
by introducing an adaptive self-training approach. Our approach
leverages abundant, unlabeled data to enable the network to learn
and adapt to a user’s diverse gait patterns. As shown in Fig. 2, the
trained model processes the unlabeled dataset to generate predic-
tions, which are subsequently assigned as pseudo-labels to these
samples. This newly augmented dataset is then fed back into the
model for further training. To generate a larger and more accu-
rate set of pseudo-labels, we introduce a two-stage step-traversal
labeling algorithm. A traversal is a user’s complete walking
process from an origin to a destination, composed of a series of dis-
crete steps. By jointly evaluating the labels and confidence scores
at both the step and traversal levels, this algorithm enables label
propagation to low-confidence samples and achieves more accurate
annotation of unlabeled data.

7.1 Pretained Model
First, a robust pre-trained model is essential to ensure that features
extracted under different gait covariates meet the cluster assump-
tion in the feature space. To this end, we pre-train our FlowGait
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Figure 9: The Effect of the Step-Traversal Labeling Algorithm.
To address incorrect labels and omissions in the step-level
pseudo-labeling, we perform a label propagation once the
labels in a complete traversal meet our traversal labeling
criterion. This process corrects erroneous pseudo-labels and
adds previously excluded, low-confidence steps to the train-
ing set. As a result, the model learns to recognize a more
diverse range of gaits.

model on the RDGait dataset[56]. During pre-training, we treat
samples of a subject walking towards and away from the radar as
two distinct identities. This separation is critical because the body’s
radar reflection characteristics are highly orientation-dependent.
Without this strategy, features for these two directions might clus-
ter during training but would remain separate in the test set (see
Sec. 6.2.4).

7.2 Self-training
Self-training is a semi-supervised learning approach where a model
enhances its own performance by generating pseudo-labels from
abundant unlabeled data and using them as new training samples.
This methodology is particularly effective for gait recognition due
to the temporal nature of gait: it exhibits short-term stability but
undergoes long-term evolution. Self-training allows the model to
continuously adapt to these gradual changes, leveraging the short-
term consistency to confidently label new data and learn from
the long-term shifts. The self-training in our system is divided
into two stages: a supervised warm-up and pseudo-label-based
semi-supervised fine-tuning. We assume that an initial batch of
labeled data, referred to as “enrollment data”, is readily available,
marked as: 𝐷𝐿 = {(𝑥𝑙

𝑖
, 𝑦𝑙

𝑖
)}𝑁𝐿

𝑖=1, where 𝑁𝐿 is the number of sam-
ples, 𝑥𝑙

𝑖
is a sample, and 𝑦𝑙

𝑖
is its corresponding label. During the

system’s operational phase, new, unlabeled data is acquired, de-
noted by 𝐷𝑈 = {𝑥𝑢

𝑗
}𝑁𝑈

𝑗=1. The process unfolds as follows: first, the
model is warmed up using only the labeled enrollment data (𝐷𝐿).
Subsequently, we leverage the unlabeled data (𝐷𝑈 ) to generate
pseudo-labels for the second fine-tuning stage, allowing the model
to adapt and improve.

During the self-training process, we freeze the model’s feature
extraction module. This approach serves multiple purposes: it pre-
serves the robust knowledge acquired from the large-scale pre-
training dataset, prevents overfitting to new users, and enhances
training efficiency by eliminating gradient computations for the
frozen layers. Building on this frozen feature extractor, we then
attach and train a new classification head, which is a 3-layer MLP
with dimensions (𝐷𝑀 , 𝐷𝑀 ,𝐶), where𝐷𝑀 is the intermediate feature
dimension and C is the number of classes.

7.2.1 Supervised Warm-up. We begin with a supervised warm-up
phase before semi-supervised fine-tuning. This initial stage uses
only the enrollment data to bring the pre-trained network to a stable
and robust state before introducing unlabeled data. Concretely,
during the first 𝑇𝑊 epochs, the model is trained exclusively on the
enrollment data by optimizing only for the supervised loss 𝐿𝑆 :

𝐿𝑆 =
1
𝑁𝐿

𝑁𝐿∑︁
𝑖=1

𝐻 (𝑦𝑙𝑖 , 𝑓𝜃 (𝑥
𝑙
𝑖 )), (10)

where 𝐻 (𝑦, 𝑝) is the cross-entropy (CE) loss between the true label
𝑦 and the predicted probability distribution 𝑝 .

7.2.2 Semi-supervised Fine-tuning. We address semi-supervised
learning for unlabeled data through a pseudo-labeling approach.
The central principle of this method is to utilize the model’s own
predictions on the unlabeled set to assign pseudo-labels, which
are subsequently treated as true labels for further training. Herein,
we introduce the two-stage step-traversal labeling algorithm. This
algorithm is designed to leverage high-confidence step samples
by propagating their labels to associated samples along the same
traversal.

Step-level Labeling: Initially, for each unlabeled sample 𝑥𝑢
𝑗

∈
𝐷𝑈 , the model 𝑓𝜃 generates a C-dimensional probability vector
𝑝𝑢
𝑗
. The initial pseudo-label 𝑦𝑢

𝑗
and its confidence score 𝑐𝑜𝑛𝑓 𝑢

𝑗
are

determined as follows:

𝑝𝑢𝑗 = 𝑓𝜃 (𝑥𝑢𝑗 ); 𝑦𝑢𝑗 = argmax(𝑝𝑢𝑗 ); 𝑐𝑜𝑛𝑓 𝑢𝑗 = max(𝑝𝑢𝑗 ) . (11)

To mitigate confirmation bias from noisy labels, we introduce a
confidence threshold 𝜏𝑐 ∈ [0, 1]. A pseudo-label is assigned to
a sample only if its maximum predicted probability exceeds this
threshold.

Traversal-level Label Propagation: A traversal is a user’s walk-
ing sequence from start to finish, composed of multiple steps (un-
labeled samples), denoted by 𝑃 = {𝑥𝑝1 , 𝑥

𝑝

2 , ..., 𝑥
𝑝

𝑁𝑝
}.. Our goal is to

assign a single, highly reliable label to the entire traversal.
A class 𝑐 is designated as the definitive label for a traversal

𝑃 if it represents a dominant proportion of high-confidence steps
within the traversal. For each class c, we calculate proportion 𝜋 (𝑐)
of high-confidence steps:

𝜋 (𝑐) = 1
𝑁𝑝

𝑁𝑝∑︁
𝑘=1
I(𝑦𝑝

𝑘
= 𝑐 ∧ 𝑐𝑜𝑛𝑓

𝑝

𝑘
> 𝜏𝑐 ), (12)

where 𝑦𝑝
𝑘
and 𝑐𝑜𝑛𝑓 𝑝

𝑘
are the initial pseudo-label and confidence for

the 𝑘-th step, and I(·) is the indicator function.
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Let 𝑐 = argmax𝑐 𝜋 (𝑐) be the class with the highest proportion.
We define the traversal labeling criterion: if the highest propor-
tion exceeds a traversal threshold 𝜏𝑝 ∈ [0, 1], we assign 𝑐 as the
definitive traversal label 𝐿𝑃 :

𝐿𝑃 = 𝑐 if 𝜋 (𝑐) > 𝜏𝑝 . (13)

Once determined, this label 𝐿𝑃 is propagated to all steps within the
traversal, updating their pseudo-labels to ensure consistency. This
process corrects initial misclassifications and incorporates even
low-confidence samples into the training set under a high-quality
label, as illustrated in Fig. 9. If no class meets the threshold 𝜏𝑝 ,
the steps retain their original, confidence-filtered pseudo-labels.
Different values of 𝜏𝑝 represent a more conservative or aggressive
mechanism for assigning the determinant label. In our experiments,
we set 𝜏𝑐 and 𝜏𝑝 to 0.95 and 0.5, respectively, and we analyze the
impact of varying these values in our evaluation.

Constructing the Pseudo-Labeled Dataset: We now construct a
new pseudo-labeled dataset 𝐷′

𝑈
by collecting all unlabeled samples

that have received a high-quality label through our process.
A sample 𝑥𝑢

𝑗
with its final pseudo-label 𝑦𝑢

𝑗
is added to 𝐷′

𝑈
if it

meets one of two conditions:
1. Traversal-level Label: Its traversal 𝑃 ( 𝑗) was assigned a

definitive label 𝐿𝑃 ( 𝑗 ) . In this case, its final label is𝑦𝑢
𝑗
= 𝐿𝑃 ( 𝑗 ) .

All steps from such a traversal are included.
2. Step-level Label: Its traversal 𝑃 ( 𝑗) did not get a definitive

label, but the step’s own confidence is high (𝑐𝑜𝑛𝑓 𝑢
𝑗
> 𝜏𝑐 ). In

this case, its final label is its own initial one, 𝑦𝑢
𝑗
= 𝑦𝑢

𝑗
.

The resulting set 𝐷′
𝑢 = {(𝑥𝑢

𝑗
, 𝑦𝑢

𝑗
} contains all unlabeled samples

that we are confident about, with their pseudo labels.

Loss Function: With the high-quality set 𝐷′
𝑢 defined, the unsuper-

vised loss 𝐿𝑈 is simply the standard cross-entropy loss computed
over this set:

𝐿𝑈 =
1

|𝐷′
𝑈
|

∑︁
(𝑥𝑢 ,𝑦̃𝑢 ) ∈𝐷 ′

𝑈

𝐻 (𝑦𝑢 , 𝑓𝜃 (𝑥𝑢 )), (14)

where |𝐷′
𝑈
| is the number of samples in the new pseudo-labeled

dataset. The total loss L for training is the weighted sum of the
supervised and unsupervised losses:

𝐿 = 𝐿𝑆 + 𝛼𝐿𝑈 , (15)

where𝛼 is a balance coefficient. During backpropagation, the pseudo-
labels 𝑦𝑢 are treated as fixed constants (i.e., we stop their gradients).
This same label propagation logic is also applied during inference.

7.3 Continuous Learning Pipeline
In the process of real-world deployment, the self-training method
still faces several challenges. First, as new data continuously ar-
rives and accumulates over time, it leads to increasing storage
requirements and progressively longer training durations. Second,
an excessive amount of new data can cause the model to become bi-
ased towards recent samples, leading to catastrophic forgetting. To
address these issues, we implement a continuous learning pipeline
based on core-set replay. Our model update pipeline is shown in
Fig. 10. Our pipeline begins at the enrollment stage, where the col-
lected data forms a labeled dataset. Starting from the second day,
the system enters a daily update cycle:

Figure 10: FlowGaitContinuous Learning Pipeline. Executing
in the order of 1,2,3.

Data Collection: During the user’s daily activity, the system au-
tomatically collects their gait data. This data is then aggregated at
the end of each day to form an unlabeled dataset.

Model Update: The system performs self-training using the “core
set” (i.e., the labeled data) and the newly generated unlabeled data
from the day. The core set is a fixed-size collection comprising the
initial labeled enrollment data and pseudo-labeled daily data. Dur-
ing self-training, this core set is replayed to maintain the model’s
accuracy on historical patterns, thereby preventing catastrophic
forgetting. To control the training duration, our system trains for a
fixed number of epochs in each update cycle.

Core Set Update: After themodel training is complete, we generate
a new core set by screening both the unlabeled data and the existing
core set. First, the unlabeled data is fed into the newmodel, and low-
quality samples are filtered out using the pseudo-labeling algorithm
described in the previous section. Next, we perform proportional
downsampling on the combination of this high-confidence pseudo-
labeled data and the old core set to yield the new, updated core
set. This approach ensures that the new core set not only retains
a portion of historical data but also increases the proportion of
recent data, effectively keeping the model synchronized with the
user’s evolving gait. In this stage, we incorporate both high- and
low-confidence samples without applying further filtering based on
their individual scores. This strategy is justified by two key reasons.
First, samples with lower step-level confidence have already been
validated by the traversal labeling criterion; since the aggregated
traversal-level confidence is sufficiently high, the reliability of these
samples is ensured. Second, a core objective of our approach is to
explicitly retain these ‘outlier’ data points, as they often capture
critical temporal variations in the user’s gait patterns.

In summary, through the pipeline described above, we achieve
dynamic synchronization with the user’s gait while constraining
the training time for each update to a low and stable value.

8 Evaluation on Cross-Covariate/Route
Recognition

8.1 Implementation
We have implemented FlowGait in Python. The data preparation
module was modified based on OpenRadar [42]. The network and
self-training module are implemented using PyTorch [43]. For the
training stage, we use a batch size of 256 and the Adam optimizer
with an initial learning rate of 1 × 10−4, which decreases according
to a cosine annealing schedule. For all models, the training stage is
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(a) Radar device (b) Scenario I: Conference room (c) Session II: Hall

Figure 11: Experimental Equipment and Scenarios for Our Dataset. The arrows indicate the walking direction, and the blue
area in the real-life image represents the walking area.

Figure 12: Visualization of Different Walking-covariates and the Corresponding Micro-Doppler Spectrum in Cross-Covariates
Dataset.

Figure 13: Visualization of the Experimental Routes and their Corresponding Micro-Doppler Spectrum in Cross-Routes Dataset.
With the radar at the origin, the y-axis extends forward, and the x-axis extends to the right. The coordinates for the points in the
figure are: 𝐴(0.0, 2.4), 𝐵(0.0, 8.8), 𝐶 (−1.6, 8.8), 𝐷 (1.6, 2.4), 𝐸 (1.6, 5.6), 𝐹 (1.6, 8.8), 𝐺 (0.0, 5.6). The green arrows in the micro-Doppler
spectrums represent radial velocity changes.
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conducted over a maximum of 100 epochs. Parameters 𝑇𝑊 is set to
20, 𝜏𝑐 is set to 0.95, 𝜏𝑝 is set to 0.5, and 𝛼 is 1.0.

As shown in Fig. 11(a), FlowGait is developed on a single-chip
millimeter-wave radar, IWR6843boost [51]. We use the DCA1000
evaluation module [50] for real-time data capture. The start and
end frequencies were set to 60𝐺𝐻𝑧 and 64𝐺𝐻𝑧, respectively. And
the Frequency Slope was set to 119.975𝑀𝐻𝑧/𝜇𝑠 . The numAdcSam-
ples was set to 256, and the numChirpsPerLoop was set to 255.
With the above configuration, the radar system has a range reso-
lution of 5.9𝑐𝑚 and a maximum range of 15𝑚. The radial velocity
that FlowGait can measure is 6.8𝑚/𝑠 , with a velocity resolution of
5𝑐𝑚/𝑠 . The frame rate of the radar was set at 20 frames per second
(fps). While running, the radar is connected to a laptop with an
AMD Ryzen 9 4900H CPU and an NVIDIA GeForce RTX 2060 GPU.
The deep learning model was trained on an NVIDIA GeForce RTX
3090 GPU.

8.2 Data Collection and Baselines
We conducted a comprehensive laboratory study with 24 volunteers
to evaluate FlowGait’s cross-covariates/routes performance. Our
studies were approved by the Institutional Review Board (IRB) of
our institution. The dataset included 24 participants (14 male, 10
female), aged 20–35 years, with heights ranging from 1.52–1.91
m and weights from 41–110 kg. Our dataset is composed of two
distinct subsets: a Cross-Covariate dataset (12 participants), a
Cross-Route dataset (12 participants). Each volunteer took part
in only one experiment. The two datasets are introduced below:

• Cross-Covariate dataset. The Cross-Covariate dataset in-
cludes 12 participants and 12 distinct gait covariates, which
are: Carrying Items (Shoulder Bag, Handbag, Backpack, Suit-
case, Umbrella), Clothing and Footwear (Thick Coat, Slip-
pers), Phone-related Actions (Calling, Texting), Body Posture
(One Hand in Pocket, Both Hands in Pockets), and Normal
Walking. Fig. 12 shows the walking photos and correspond-
ing micro-Doppler spectrograms for the different gait covari-
ates, demonstrating that the spectrograms vary significantly
across different covariates. Data collection took place in a
conference room, as shown in Fig. 11(b). Participants were
instructed to walk naturally for two minutes for each co-
variate condition and for four minutes for Normal Walking.
Detailed descriptions of each covariate and its abbreviation
are provided in Table 6 in the Appendix.

• Cross-Route dataset. The Cross-Route dataset contains
data from 12 participants navigating 11 distinct routes:
five straight-line routes, three polyline routes, and three
curved routes. The data was collected in a large hall, as
shown in Fig. 11(c). For each designated route, volunteers
were instructed to walk back and forth along the route for
two minutes. The different walking routes are shown in
Fig. 13. Each route is denoted as R-1, R-2, ..., R-11. Fig. 13
also shows the micro-Doppler spectrograms of the same
volunteer walking along different routes. In the figure, the
green dashed line indicates the velocity trend, showing that
the spectrograms for different routes exhibit varying degrees
of scaling in the velocity dimension.

After preprocessing the data as described in Sec. 5, each data
point consists of a sample, a user ID, covariate-ID/route-ID, and
a traversal-ID. Each traversal-ID represents a complete, single
traversal—either forward or backward—meaning that different steps
from the same traversal. We then partitioned each dataset into
labeled, unlabeled, and test sets. For the Cross-Covariate dataset,
only data from the Normal Walking (NM) was used as the labeled
set. For the Cross-Route dataset, data from the first two routes
(R-1, R-2) formed the labeled set. In both scenarios, all remaining
datas were split evenly: 50% for the unlabeled training set and
50% for the test set, guaranteeing no traversal-ID overlap between
partitions. During the unlabeled training phase, the model had no
access to user IDs or covariate-ID/route-ID labels, but it retained
the traversal-ID information to group steps belonging to the same
traversal.

Baselines. We compared FlowGait against four baseline methods
to evaluate its performance:

• Origin. This is the origin FlowGait model pre-trained on
the RDGait dataset [56]. Features are extracted directly with-
out any fine-tuning. During testing, feature similarity is
measured using the L2 distance.

• Supervised. Based on Origin, use labeled enrollment data
for supervised training.

• SSL (Own Cov.). This semi-supervised learning (SSL) ap-
proach employs pseudo-labeling. For each evaluation, it is
trained exclusively on unlabeled data from the specific target
covariate (e.g., only "handbag" data is used when testing the
"handbag" condition).

• SSL (All Cov.). In this semi-supervised approach, the model
is trained using pseudo-labeling on all available unlabeled
data from the entire training set.

8.3 Overall Performance
The overall performance of our proposed method and the base-
line methods is summarized in Table 2. Our proposed method,
FlowGait (ours), consistently achieves the best performance across
both challenging scenarios, reaching a Top-1 accuracy of 94.8% on
the Cross-Covariates dataset and 98.6% on the Cross-Routes dataset.

The results reveal a clear and logical performance progression.
The Origin FlowGait Model, which relies solely on pre-trained
features for L2 distance comparison, establishes the baseline per-
formance at 80.4% and 82.9% for the two scenarios, respectively.
Supervised fine-tuning on the labeled data provides a notable im-
provement (83.6% and 87.7%), confirming the benefit of task-specific
adaptation.

Table 2: A Comparison of Method Performance across Dif-
ferent Scenarios.

Method Cross-Covariates Cross-Routes

Origin 80.4% 82.9%
Supervised 83.6% 87.7%

SSL (Own Cov.) 86.4% 93.1%
SSL (All Cov.) 88.8% 94.4%

FlowGait (ours) 94.8% 98.6%
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Figure 14: Performance for Cross-Covariates Gait Recogni-
tion.

Figure 15: Performance for Cross-Routes Gait Recognition.

A significant leap in performance is achievedwith semi-supervised
learning (SSL). The SSL (Own Cov.) approach, which uses pseudo-
labeling on unlabeled data from the same condition, substantially
boosts accuracy to 86.4% and 93.1%. Furthermore, leveraging the full
unlabeled data in SSL (All Cov.) provides an even greater advantage,
pushing the accuracy to 88.8% and 94.4%. Finally, FlowGait, with
its proposed two-stage step-traversal labeling algorithm, delivers
the largest performance gain, validating the superior efficacy of our
method in leveraging unlabeled data.

8.4 Performance Across Different Covariates
The gait recognition results for the Cross-Covariate dataset are
detailed in Fig. 14. Our proposed method, FlowGait, demonstrates
superior performance across all conditions, delivering the most
significant gains in challenging scenarios.

Overall Performance. Our system consistently outperforms all
baselines. On simpler covariates such as Shoulder Bag (SB), Hand-
bag (HB), and Calling (CA), it achieved near-perfect accuracy rates,
all exceeding 98%. More importantly, on difficult covariates like
Suitcase (SC) and Texting (TX), our method boosted accuracy from
baseline levels of 67% to over 91%, an improvement of more than 24
percentage points. Even on the most challenging conditions, Thick
Coat (TC) and Both Hands in Pockets (BHP), it achieved robust
accuracies of 80.6% and 87.5%, respectively.

The Value of Diverse Unlabeled Data. A key finding emerges
from comparing the two semi-supervised learning (SSL) strategies.
The SSL (All Cov.) method, which uses all available unlabeled data,
consistently outperforms SSL (Own Cov.). This suggests the model
benefits from an implicit "easy-to-hard" curriculum, where data
from simpler covariates aids in learning features for more complex
ones. This effect is most pronounced on difficult tasks like SC and

BHP, where using all unlabeled data improved accuracy by over
7 percentage points compared to using only target-specific data.
Conversely, for some simple covariates (e.g., SB, HB), this diverse
training set caused a slight accuracy decrease. This highlights an
expected trade-off: leveraging a wide range of data boosts overall
generalization at the minor cost of specialization on a single, simple
task, which in turn helps mitigate overfitting.

Analysis of Challenging Covariates. The difficulty of certain
covariates stems from their significant biomechanical impact. Thick
Coat (TC) severely restricts the natural movement of joints, while
Both Hands in Pockets (BHP) forces unnatural, compensatory leg
movements to maintain balance. It’s worth noting that the BHP
gait was described by most volunteers as awkward and unrepresen-
tative of their normal walk. The TC scenario, however, points to a
key strength of our approach. In reality, people’s clothing choices
are continuous, for example, from short sleeves to long sleeves, to
sweaters, and then to heavy coats. In such continuous gait varia-
tions, our method can better learn new gaits progressively, which
we will introduce in the Sec. 9.

Impact of the Step-Traversal Labeling Algorithm. Finally, the
two-stage step-traversal labeling algorithm provides a consistent
and significant performance boost. Its introduction improved accu-
racy by 2.4% to 9.4% across different covariates during the training
phase. This enhancement carried over to the testing phase, provid-
ing a further improvement of 0.9% to 2.8%. This result validates the
effectiveness of our hierarchical approach, which combines step-
level evidence with traversal-level context for more robust label
propagation.

8.5 Performance Across Different Route
As shown in Fig. 15, FlowGait (Ours) demonstrates outstanding
performance and significant improvements across all 9 walking
routes. It achieved average identification accuracies of 99.6% on
straight-line routes (R-3, R-4, R-10), 99.0% on polyline routes (e.g.,
R-5, R-7, R-8), and 97.2% on curved routes (R-6, R-9, R-11), out-
performing the baseline by 7.1%, 18.3%, and 21.7%, respectively.
Notably, our system’s accuracy exceeded 93% on all routes and
surpassed 98% on 8 out of the 9 routes, confirming its superior
generalization capabilities for cross-route recognition.

The primary challenge in cross-route recognition is the change
in viewing angle and postural adjustments at turns, while a per-
son’s fundamental walking rhythm remains relatively consistent.
Our system excels here because the labeled training routes (R-1 and
R-2) expose the model to the velocity signatures of both straight
and diagonal walking. Our two-stage step-traversal labeling algo-
rithm then effectively leverages this knowledge. By identifying
high-confidence steps within a new, unlabeled traversal, it propa-
gates their labels to other, less certain steps from that same traversal,
efficiently teaching the model to recognize a user’s gait from a va-
riety of new perspectives. The most challenging route was R-11
(93.8% accuracy), which involves frequent, sharp turns that disrupt
body balance beyond simple angular changes. Nevertheless, our
method still achieved a massive 25.9 percentage point improvement
over the baseline on this difficult route.
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Figure 16: Evaluation on Elders Group.
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Figure 17: Evaluation on Children
Group.
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Figure 18: Evaluation on
Families.

Importance of Labeled Routes. To validate the importance of the
enrollment labeled data, we conducted an ablation study, training
the model with only R-1 (straight) or only R-2 (diagonal) as the
labeled set. As shown in Fig. 22, using both routes yielded a final
accuracy of 98.6%. Using only the straight route (R-1) resulted in a
significantly lower accuracy of 84.2%, while the diagonal route (R-2)
alone achieved 90.2%. This confirms that both routes are crucial. The
straight route (R-1) provides a stable anchor for a user’s baseline
gait features, while the diagonal route (R-2) is essential for learning
features from varying perspectives. Therefore, we recommend that
for any deployment in empty spaces, the enrollment data for a gait
recognition system should include, at a minimum, samples from
both straight and diagonal walking routes.

8.6 Generalization to Unseen Conditions
To evaluate the model’s ability to generalize to entirely new scenar-
ios, we conducted a leave-one-out cross-validation. In this setup,
we iteratively held out one covariate or route as a test set, trained
the model on all remaining conditions (both labeled and unlabeled),
and then evaluated performance on the completely unseen held-out
data. The model demonstrated strong generalization capabilities. In
the leave-one-covariate-out tests, the average accuracy was 93.8%,
and in the leave-one-route-out tests, it was 97.3%. These results rep-
resent only a minor performance drop of 1.0% and 1.3% compared
to the main experiment, confirming that our system can effectively
generalize to novel gait patterns not encountered during training.

8.7 Performance on Elderly and Child Subjects
To evaluate the generalization capability and robustness of the pro-
posed system across different demographics, particularly for groups
with distinct gait patterns, we conducted extensive cross-covariate
experiments on elderly and child subjects. We recruited 10 elderly
participants and 6 children to assess cross-covariate recognition
performance. Our studies were approved by the Institutional Re-
view Board (IRB) of our institution. The mean age and standard
deviation were 59.5 ± 4.28 for the elderly group and 9.67 ± 1.75
for the children group. Adhering to human-centric principles, we
surveyed the volunteers regarding their daily walking habits and
adjusted the covariates accordingly. We excluded covariates that
are uncommon for these groups, including Suitcase (SC), Texting
(TX), One Hand in Pocket (OHP), and Both Hands in Pockets (BHP).
Specifically, we added Walking while Holding Waist (HW) for the
elderly; for the children, we additionally removed Calling (CA) and

(a) Cross-Covariates: step-level (b) Cross-Covariates:
traversal-level

(c) Cross-Routes: step-level (d) Cross-Routes: traversal-level

Figure 19: Pseudo-Label Statistics over Epochs. The red region
represents the incorrect pseudo-labels.

introduced Walking while Holding a Book(BK). The data collection
scenarios and procedures remained consistent with those of the
primary cross-covariate dataset. However, considering the limited
physical stamina of the elderly and children, ample rest intervals
were provided between sessions. The detailed Top-1 accuracy dis-
tributions are presented in Fig. 16 and Fig. 17.

As illustrated in Fig. 16, the algorithm demonstrates exceptional
stability in the elderly group, achieving a mean accuracy of 97.7%.
Under the six scenarios, including Satchel Bag (SB), Hand Bag (HB),
Backpack (BP), Using Umbrella (UB), Thick Coat (TC), and Slippers
(SP), the algorithm demonstrates exceptional recognition precision,
with accuracies consistently maintained above 98%. Due to the limb
deformation caused by "Walking while Holding Waist" and "Call-
ing," the recognition accuracies are slightly lower, reaching 94.6%
and 94.9%, respectively. These results attest to the system’s high
reliability in the daily activity scenarios of the elderly. As illustrated
in Fig. 17, the algorithm also exhibits excellent performance in the
child group, achieving a high mean recognition accuracy of 97.5%.
Notably, compared to other age groups, carrying heavy objects (e.g.,
umbrellas and books) exerts the most significant impact on children.
This is attributed to the limited physical strength of children, as
carrying objects more easily disrupts their walking balance.

8.8 Performance Across Different Groups
To validate the recognition accuracy of FlowGait across different
family compositions, we constructed simulated family units by ran-
domly sampling subjects from the Cross-Covariate, Elderly, and
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Figure 20: Evaluation on Differ-
ent Confidence Thresholds.
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Figure 21: Evaluation on Differ-
ent Traversal Thresholds.
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Figure 22: Accuracy
across Different La-
beled Datasets.
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across Different Pre-
training Models.

Child datasets. Specifically, four distinct family types were defined:
1) Young-Adults (YA), consisting of 2 adults; 2) Standard-Nuclear
(SN), comprising 2 adults and 2 children; 3) Elderly-Care (EC), in-
cluding 2 adults and 2 elderly subjects; and 4) Multi-Gen (MG),
containing 2 adults, 2 children, and 2 elderly subjects. The evalu-
ation protocol followed the same metrics as the Cross-Covariate
experiments. To ensure robustness, we performed five rounds of
random sampling for each family type using different volunteers
and reported the average accuracy. The results, as illustrated in Fig.
19, indicate that FlowGait achieves consistently high performance
across all four family scenarios, with average accuracies exceeding
99%. Notably, these results surpass those obtained from individual
group evaluations. This improvement is attributed to the significant
inter-group gait differences—such as the slower walking speed of
the elderly and the shorter stride length of children—which make
distinguishing between members in a mixed group easier. These
findings demonstrate the promising potential of our system for
practical applications in smart home environments.

8.9 Ablation Study
8.9.1 Effecacy of Two-stage Labeling Algorithm. To validate our
proposed two-stage labeling algorithm, we analyzed the quantity
and quality of pseudo-labels it generated compared to a standard
step-level-only approach. Fig. 19 visualizes the number of correct
(yellow) and incorrect (red) pseudo-labels generated during each
training epoch. The results clearly show that while both methods
generate more pseudo-labels as training progresses, our two-stage
labeling algorithm consistently produces more correct labels while
simultaneously suppressing incorrect ones. For instance, at the
100th epoch of the cross-covariate task, our method increased the
number of correct labels by 8.4% and reduced incorrect labels by
38.6%. The benefit was even more pronounced in the cross-route
task, where our method yielded 8.3% more correct labels and 63.1%
fewer incorrect ones. These statistics confirm that our two-stage
labeling algorithm significantly improves the quality of the pseudo-
labeled set, providing a more reliable signal for the self-training
process.

8.9.2 Impact of Pre-training Data. To investigate the influence of
the pre-trained model’s quality, we compared two pre-training
strategies: using the full RDGait dataset versus using only the Sce-
nary 1 subset. As shown in Fig. 23, the choice of pre-training data
significantly impacts performance, especially in the cross-covariate

task. When pre-trained on Scenary 1, the model’s accuracy dropped
to 77.1% (a 17.7% decrease) on the cross-covariate task and 96.1% (a
2.5% decrease) on the cross-route task compared to pre-training on
the full dataset. This result underscores that robust generalization,
particularly across diverse covariates, is highly dependent on a
large and varied pre-training dataset.

8.9.3 Impact of Key Parameters. We conducted an ablation study to
evaluate the impact of the confidence threshold 𝜏𝑐 and the traversal
threshold 𝜏𝑝 and determine their optimal values. The results are
presented in Fig. 20 and Fig. 21. First, to find the optimal confidence
threshold, we fixed the traversal threshold at 0.5 and tested 𝜏𝑐
values of 0.85, 0.9, 0.95, and 0.98. As shown in Fig. 20, the model
achieved the best performance when 𝜏𝑐 was set to 0.95. Using this
optimal confidence threshold, we then evaluated the impact of the
traversal threshold 𝜏𝑝 , testing values from 0.3 to 0.8. The results
(Fig. 21) show that the optimal 𝜏𝑝 is task-dependent. The highest
accuracy was achieved with 𝜏𝑝 = 0.5 for the cross-covariate task
and 𝜏𝑝 = 0.4 for the cross-route task. This suggests that a higher
traversal threshold is better for more challenging tasks to prevent
error propagation, while a lower threshold is advantageous for
simpler tasks to include more unlabeled data.

9 Evaluation on Long-term Deployment
To validate FlowGait’s viability for real-world deployment, we
performed a comprehensive evaluation targeting its long-term per-
formance, security, and user experience. This evaluation comprised
three parts. First, we collected a two-week longitudinal gait dataset
to assess the stability of the system’s recognition accuracy over
time and to quantify the computational overhead (i.e., training time
and latency). Second, we evaluated its efficacy in detecting abnor-
mal users. Finally, we gathered feedback from participants through
a user study.

9.1 Dataset
We collected a Cross-Day dataset by collecting data from 7 partici-
pants (3 male, 4 female) over two weeks in a real-house setting. Our
studies were approved by the Institutional Review Board (IRB) of
our institution. As depicted in Fig. 24(a), the experimental area fea-
tured three distinct routes: a spacious, 6-meter curved living room
route; a straight 7-meter corridor route; and a narrow 4-meter
bedroom route, with a width of just 0.64 meters beside the bed.
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(a) Experimental Equipment and Scenarios for the Cross-Day Dataset.

(b) Micro-Doppler Spectrum for Different Rooms. The x-axis is Doppler-velocity bins, and the y-axis is the number of frames.

Figure 24: Illustration of the experimental environment and corresponding data of the Cross-day dataset.

Each participant was asked to collect data on 10 separate days over
two weeks. The protocol required a four-minute walk per route on
the initial day, with the duration shortened to two minutes for all
subsequent days. To capture naturalistic walking patterns, partici-
pants received no specific instructions on their walking style. Some
volunteers participated in data collection after a workout or Pilates
session, others after their baby had fallen asleep, and some right
after returning from work. As shown in the micro-Doppler spec-
trograms in Fig. 24(b), a single traversal along the living room and
corridor routes typically took about 100 frames (approx. 8 steps),
whereas the shorter bedroom route took about 70 frames (approx.
5 steps). Notably, the spectrogram for the narrow bedroom route
appears more cluttered.

9.2 Baselines
To simulate a realistic deployment scenario, we designated the data
from the first day as the sole source of the labeled dataset. Our
model was pre-trained on the RDGait dataset[56]. We proceeded to
evaluate the following methods:

• Supervised. A baseline model was fine-tuned on the labeled
data from Day 1.

• FlowGait. Our method. For each day’s test (on Day N), it
performs semi-supervised training using the labeled data
from Day 1 and the unlabeled data from Days 2 to N-1.

• FlowGait-Continuous. FlowGait using the continuous learn-
ing pipeline.

9.3 Performence
9.3.1 Overall Performance. The overall performance of our pro-
posed model compared to the baseline is detailed in Table 3, with
day-by-day results shown in Fig. 25. Our model achieved average
recognition accuracies of 96.5%, 97.1%, and 92.8% for the living
room, corridor, and bedroom routes, respectively, outperforming
the baseline by 6.0%, 7.4%, and 9.2%. These results confirm our
model’s superior accuracy and stability in long-term operation. A
significant performance degradation was observed for the baseline
method over the two weeks. Specifically, its accuracy declined from
98.4% to 86.4% (living room), 97.8% to 84.7% (corridor), and 91.0%
to 73.7% (bedroom). In stark contrast, our method achieves a high
level of performance, posting Day-10 accuracies of 97.1%, 98.6%,
and 92.6%. FlowGait reduced performance decay from 13.6% to just
1.4% for average.

To statistically validate these trends, we performed a Mann-
Kendall Trend Test (Table 4). The baseline method exhibited a
statistically significant downward trend, with p-values of 0.0091,

Table 3: Comparison of Gait Recognition Accuracy in Differ-
ent Routes.

Method Living room Corrider Bedroom

Supervised 90.6% 89.7% 83.6%
FlowGait 96.6% 96.2% 92.3%
FlowGait-Continuous 96.5% 97.1% 92.8%
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(a) Top-1 Accuracy of Living-room.
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(b) Top-1 Accuracy of Corrider.
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(c) Top-1 Accuracy of Restroom.

Figure 25: Overall Gait Recognition Accuracy in Different Routes.

Table 4: Mann-Kendall Trend Test Results for Different Routes and Methods.

Living-room Route Corridor Route Bedroom Route

Method p-value Slope p-value Slope p-value Slope

Supervised 0.0091 −1.5000 0.0091 −1.6833 0.0012 −2.3607
FlowGait 0.4655 −0.1929 0.2084 −0.4524 0.2084 −0.8167
FlowGait-Continuous 0.2084 −0.3688 0.6750 −0.0750 0.1753 −0.1917
Note: Slope refers to the Theil-Sen slope estimator. Bold values indicate a statistically significant trend (p < 0.05).

(a) FAR.

(b) FRR.

Figure 26: FAR and FRR for Abnormal User Detection across
Various Days.

0.0091, and 0.0012 for the three scenarios (all 𝑝 < 0.05). Conversely,
our model showed no significant trend, with p-values between 0.1
and 0.4. Furthermore, by analyzing the slope of the performance
curves, we found that our method reduced the rate of degradation
by 4.06-fold, 22.4-fold, and 12.3-fold across the three routes, yielding
an average 12.9-fold mitigation in performance decay.

9.3.2 Training Time and Latency. To assess the system’s viability
for edge deployment, we benchmarked its computational efficiency
on a representative consumer-grade laptop equipped with an AMD
Ryzen 7 7435H CPU, 32GB of RAM, and an NVIDIA GeForce RTX
4060 Laptop GPU (8GB VRAM). For the training phase, we con-
figured a batch size of 128, utilized NVIDIA’s Automatic Mixed

Precision (AMP) for acceleration, and set the coreset to 600 sam-
ples per ID. The results for each stage are presented in Fig. 27. We
observed that the coreset construction time was negligible, aver-
aging just 8.0 seconds per session. The main training time initially
increased but quickly stabilized between 290 and 390 seconds. This
plateau is attributed to the coreset reaching saturation around the
fourth day, after which the daily training set size remains relatively
constant. Additionally, during the training process, the average
memory usage was 300M. Our model size is 10.9M. The system’s
real-time processing performance was also benchmarked on the
same hardware, with latency measured using a batch size of one.
The results, illustrated in Fig. 28, show a mean data preprocessing
latency of 33.53 ms per frame and a model inference latency of
7.16 ms per sample. This low overall latency validates the system’s
capability for deployment in real-time applications.

9.3.3 Abnormal User Detection. The system’s capability for abnor-
mal user detection was evaluated using data collected exclusively
from the corridor route. For each experimental setup, four partici-
pants were randomly assigned as authorized users and one as an
unauthorized user. The evaluation protocol simulated a day-by-
day operational scenario. To assess performance on a given Day
N, the model was first trained on the cumulative unlabeled data
from the four authorized users, spanning from Day 1 to Day N-1.
Subsequently, the trained model was tested on the Day N data from
all five participants. To ensure the statistical robustness of our re-
sults, this entire validation process was repeated five times for each
day, each with a different random selection of users. Performance
was quantified using two standard metrics: the False Acceptance
Rate (FAR)—the proportion of unauthorized users accepted—and
the False Rejection Rate (FRR)—the proportion of authorized users
rejected. As illustrated in Fig. 26, our method maintained average
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Figure 27: Daily Training Time.

Figure 28: System La-
tency.

Figure 29: SUS Results.

FAR and FRR values below 5%. This performance represents a 2.24-
fold reduction in error rates compared to the supervised baseline,
demonstrating a substantial enhancement in system security.

9.3.4 User Study. We evaluated the usability of FlowGait using
the System Usability Scale (SUS) [7], a standardized 10-item ques-
tionnaire. The system achieved an overall SUS score of 89.95 out of
100, which is considered "excellent" (a score ≥ 85 [5]). This high
score is supported by volunteers’ ratings, as shown in Fig. 29. Par-
ticipants found the system easy to use (4.57± 0.73), well-integrated
(4.57 ± 0.49), and suitable for frequent use (4.71 ± 0.70). Further-
more, the straightforward single-enrollment process contributed to
a high learnability score (4.71 ± 0.45), and users expressed strong
confidence in the system (4.71 ± 0.45).
User Acceptance. To evaluate the acceptance of FlowGait, we
conducted interviews with a diverse group of potential users. We
provided a detailed explanation of the system’s working principles
and its potential applications in smart home interactions. Their
feedback is presented below:

Mother: "This system would be helpful for monitoring my child’s safety
and activities when I am away."
Senior: "A tool that can monitor the daily gait health of my partner
and myself is exactly what we need."
Engineer: "The ‘follow-me’ concept is impressive. Being able to trig-
ger commands from any location makes the environment feel truly
personalized."
Student: "Living in a shared apartment makes me wary of strangers.
I strongly prefer a system that ensures identification while preserving
privacy."

The feedback affirms the practical utility of FlowGait for security
and personalization. In particular, the responses from the mother

Table 5: User feedback and responses.

User Concerns Response

"Is the radiation
from this device
harmful to my
health?"

Safety Compliance. mmWave is non-ionizing
radiation. Our devices operate at milliwatt-level
transmission power, remaining far below the strict
exposure limits imposed by international safety
guidelines (e.g., ICNIRP [27], FCC [21]). Thus, they
pose no known health risks.

"What if a hacker
breaks in? Can
they steal my gait
data?"

Local Processing. Our system adopts an edge-
computing architecture. It processes data entirely
on-device without requiring cloud uploads. Con-
sequently, raw, high-dimensional mmWave data
never leaves the user’s private space.

"How can I be
sure this technol-
ogy won’t be used
against me (e.g.,
for surveillance)?"

Purpose Limitation & Control. We strictly ad-
here to purpose limitation principles. Data usage is
restricted solely to the specific purpose consented
to by the user (e.g., authentication). Secondary
usage—such as employee surveillance or insur-
ance risk assessment—is strictly prohibited. Fur-
thermore, users retain full control via a physical
"off-switch" and the right to permanently delete
their data.

and senior highlight its value in assisted living contexts. In sum-
mary, FlowGait shows strong potential for adoption in real-world
environments.
Feedback and Concerns. During the interviews, participants
raised valid concerns regarding health, data privacy, and ethical
implications. In response, we explained that we ensure physical
safety by utilizing low-power, non-ionizing mmWave radiation that
strictly adheres to international standards. To protect privacy and
prevent misuse, the system employs on-device edge processing to
keep data local and enforces rigorous purpose limitations, granting
users full control via physical switches and data deletion rights. We
summarize these inquiries and our detailed responses in Table 5.

10 Discussion and Future Work
Dynamic Environments: Environmental variables can also im-
pact gait recognition performance. For example, different furniture
layouts may alter walking trajectories and occlude signals, just
as the sensor’s placement (height and angle) affects the captured
reflections. Our initial findings indicate that FlowGait is robust to
these environmental and positional changes. We will explore in
detail in future work.
Multi-User identification: FlowGait currently only supports
single-person gait recognition, but it can be naturally extended
to multi-person scenarios. By using multi-antenna data for angle
estimation, the gaits of different users can be separated in the three
dimensions of range, velocity, and angle. However, due to resolution
limitations, it still cannot handle close-proximity situations, such as
multiple people walking side-by-side. Furthermore, multi-person
tracking introduces additional complexities, as interactions can al-
ter gait patterns through phenomena like cadence synchronization
and phase locking.
Large-Scale Pre-training Dataset: Motivated by our finding that
pre-training on large, diverse datasets significantly enhances model



CHI ’26, April 13–17, 2026, Barcelona, Spain Dequan Wang, Chenming He, Lingyu Wang, Chengzhen Meng, Xiaoran Fan, and Yanyong Zhang

robustness and performance, our future work will focus on devel-
oping an extensive, multi-modal gait dataset. To this end, we plan
to deploy automated collection systems in public areas, integrating
both cameras and mmWave radar. A state-of-the-art vision model
will facilitate automatic annotation, enabling the creation of a rich
repository of naturalistic, intervention-free gait data to further
advance research in this domain.
Longitudinal Gait Health Monitoring: A promising application
for FlowGait is long-term gait monitoring for health. As a key
health indicator, gait changes in elders can signal an increased
risk of falls and other adverse events. We envision FlowGait as a
non-intrusive tool that tracks gait parameters over time to provide
early warnings of significant deviations. This could flag underlying
health issues and allow for earlier intervention.

11 Conclusion
In this work, we present FlowGait, a self-learning millimeter-wave
gait recognition framework designed for robust, long-term deploy-
ment in real-world environments. Our system pioneers a transformer-
based network for feature extraction that outperforms state-of-the-
art methods, coupled with a novel two-stage step-walk labeling
algorithm for accurate semi-supervised adaptation. Extensive evalu-
ations on a COTS mmWave radar across three challenging datasets
demonstrate its superior performance. Using minimal initial labeled
data, FlowGait achieved recognition accuracies of 94.8%, 97.9%, and
96.6%. Critically, it mitigated long-term performance decay by a
factor of 12.9, proving its viability for continuous operation in dy-
namic, real-world settings. We hope this work will contribute to
the development of adaptive biometric systems and inspire further
research into long-term deployment in real-world settings.
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(a) General Scenario.

(b) Walking Side-by-Side.

Figure 30: Range-Doppler Heatmaps and Range-Azimuth
Heatmaps for Multi-user Scenarios.

A Appendix: Feasibility Analysis for Multi-user
Scenarios

In this section, we evaluate scenarios where multiple users co-
exist in the same space to demonstrate the applicability of the
mmWave radar gait recognition system in multi-user environments.
Fig. 30a illustrates the Range-Doppler (RD) and Range-Azimuth
(RA) heatmaps in a scenario where two distinct users coexist. The
angles in the RA heatmap are computed using Capon beamform-
ing. When the two targets are non-overlapping across the range,
velocity, and azimuth dimensions, we can employ an algorithm
to separate them. Specifically, when the targets do not overlap in
the range-velocity dimension, we directly perform clustering on
the Range-Doppler heatmap to separate the multiple targets. Con-
versely, when there is overlap in the range-velocity dimension, but
the targets are distinct in the azimuth dimension, we first perform
clustering in the angular dimension to separate their spectra be-
fore reverting to the Range-Doppler domain. The subsequent steps
remain consistent with those described in the paper.

Prior studies have sought to address the challenge of separat-
ing targets in close proximity, employing techniques such as con-
strained cluster re-partitioning[56]. However, challenges persist in
multi-user scenarios. The first arises in the ‘side-by-side’ walking
case shown in Fig. 30b, where signals from two targets merge due
to spectral leakage and the limited angular resolution of mmWave
radars (approx. 15◦ for a 2Tx-4Rx horizontal configuration). The
second involves severe occlusion, where the signal from a rear user
is obstructed by a front user, resulting in signal loss and identi-
fication failure. While these scenarios are common in real-world
applications, they fall outside the scope of this paper and will be
discussed in future work.

Type Covariate Abbr. Key Biomechanical/Behavioral Characteristics

Carrying Items

Shoulder Bag SB Asymmetrical load; compensated by contralateral trunk lean and altered arm swing.
Handbag HB Unilateral load restricts arm swing; induces subtle compensatory torso shifts.
Backpack BP Symmetrical posterior load; causes a compensatory forward lean of the trunk.
Suitcase SC Torsional load on the trunk from a fixed pulling arm; alters rotational dynamics.
Umbrella UB Fixed, elevated arm eliminates swing; gait is subject to aerodynamic forces.

Clothing and
Footwear

Thick Coat TC Added mass and bulk constrain motion; results in shorter stride and reduced arm swing.
Slippers SP Poor foot fixation; leads to a shuffling motion with shorter strides to keep them on.

Phone-related
Actions

Calling CA Cognitive load (dual-tasking); reduces speed, increases variability, and lowers awareness.
Texting TX Downward head posture and lack of visual feedback cause a very slow, cautious gait.

Body Posture
One Hand in Pocket OHP Unilateral arm swing restriction; compensated by increased trunk and pelvis rotation.

Both Hands in Pockets BHP Bilateral arm swing restriction; reduces dynamic stability, requiring more core/hip motion.
Normal Walking NM Symmetrical, unconstrained gait with coordinated, reciprocal limb movement.

Table 6: Biomechanical and Behavioral Characteristics under Different Conditions
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