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Abstract— Realizing full coverage, low-maintenance, and low-
cost tactile skin is a de facto design dream since the invention
of robots. It ensures safety and enables collaborative work pro-
tocols for human robot interactions (HRI). The on-robot tactile
capability is realized by deploying an array of external sensors
or inferring from proprioceptive information that comes with
the robot, such as motor torque. However, these methods may
be cumbersome, introduce extra management cost, expensive,
lack real-world robustness, or require special robot designs. In
this paper, we present SonicSkin, a low-cost (< $2) and easy
to deploy system that localizes the on-robot human touch and
estimates the touch pressure without actually attaching sensors
at potential touch locations. The system requires only a single
pair of piezoelectric transducers (i.e. one transmitter and one
receiver) attached on the target robot and turns the robot itself
into a versatile sensor. We present a set of novel algorithms
to progressively address the unique challenges posed by our
system design. We put together an end-to-end SonicSkin system
on a Jaco robot arm that runs in real-time, and conducted an
extensive real-world study including 57019 actual evaluation
datapoints under various challenging conditions from 12 human
subjects. SonicSkin achieves less than 2 cm localization error
for 96.4% of touches, with more than 96.7% cross-correlation
similarity between the predicted touch pressure and the ground
truth touch pressure.

I. INTRODUCTION

Humans can explore the unknown physical world by feel,
weigh and grasp when identifying the location of the contact.
Also, interpersonal touch is a fundamental but undervalued
aspect of human nature. Similarly, tactile sensing plays a
key role in human robot interactions (HRI), these include
safe robot operation around humans, providing emotional
support in HRI, and human guidance of robot behaviors. Yet,
a low-cost full surface tactile skin is still unavailable despite
numerous efforts.

Existing approaches for realizing tactile skins can be
divided into two groups depending on the sensing method.
The first group relies on exteroceptive sensors such as
capacitive, magnetic and IR based sensors [1]–[6]. These
methods directly attach tens to thousands of sensor elements
to the robot to create a tactile skin that covers an adequate
area. However, they can be bulky, difficult to deploy, and may
introduce extra overhead for robot operation. Furthermore,
they can be expensive. The second group of methods employ
proprioception, e.g. motor torque, position, velocity and
momentum readings coupled with inverse kinematics and
dynamics, to create an on-robot tactile skin [7]–[9]. The
goal is to infer the contact location and contact force by
learning or building models that use measured values internal
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Fig. 1. SonicSkin system configuration and overview.

to the system. However, in practice, it is challenging to obtain
dynamic parameters due to noisy and time varying properties
of motors, and not every robot is equipped with dedicated
proprioceptive sensors. As a result, it is difficult to implement
robust real-world systems based on this group of methods.

In this paper, we present SonicSkin, a virtual tactile skin
covering the robot surface that can localize the touch and
estimate the touch pressure without deploying sensors at the
touch location. The system has three desirable properties:
1) It is low-cost (< $2). 2) It can cover the entire target
robot linkage without any dead spots. And 3) it can be
deployed on an off-the-shelf robotic manipulator or mobile
robot body with minimal modifications. To do so, SonicSkin
leverages the Acoustic Surface Wave (ASW) introduced in
our previous work [10] to create a sensing area within the
entire target robot linkage. A single pair of piezoelectric
elements is attached to the robot surface for launching and
receiving the ASW signal. The core physical intuition is that
ASW transforms the entire robot surface into an acoustical
sensor, and an external contact at different locations with
varying force will introduce different changes in damping,
mode, and acoustic impedance for the sensing system. This
change can be used to accurately localize the touch and
estimate the touch pressure even for a soft contact.

However, to realize this concept and put together a real-
world system that robustly works in a dynamic environment
is a daunting task. First, both contact location and force
will alter the ASW signal. It’s challenging to localize the
finger touch to centimeter accuracy with uncertain contact
force. We address this challenge by signaling a unique wide-
band ASW carrier wave. Second, a moving robot introduces
significant internal and external acoustical noise. The noise
is a challenge for SonicSkin because of the acoustical nature
of our sensing principle. To overcome the influence of noise,



we created an optimal spectrum prorating algorithm (OSPA)
to select the frequencies that are sensitive to external touch
but insensitive to robot noise. Third, changes in temperature
can modify acoustic properties of the robot. We address
this issue by introducing an online updating mechanism that
enables the system to work robustly during a three months
of test time using an initial one-shot training data. Fourth,
determining the contact pressure given the above challenges
is also a hard problem. SonicSkin leverages the wide-band
nature of our customized ASW waveform to overcome this
challenge.

We built a real-time system with a pair of piezoelectric
elements attached to an off-the-shelf commercial robot arm,
and demonstrated its capability to accurately localize human
touch and predict the touch pressure under several difficult
but realistic settings. This paper contributes as follows:

• SonicSkin is the first real-world system that enables full
surface tactile sensing with a single pair of low-cost
(< $2) piezoelectric sensors.

• We identified realistic real-world challenges and cus-
tomized several signal processing mechanisms to effec-
tively address these issues. The system requires only
one-shot training, runs in real-time, and corrects for
temperature changes.

• We implemented a SonicSkin prototype on a 7 DOF
manipulator, and conducted comprehensive evaluations
with 57019 actual received datapoints from 12 human
subjects. Our multi-scenario and multi-person real world
experiments show SonicSkin localizes 96.4% of the
touches with less than 2 cm error even when the
robot is moving, and attains root mean square error
(RMSE) of 0.59 N when the robot is stationary and
1.86 N for the contact pressure estimation when the
robot is moving. Additionally, we also validated the
feasibility of deploying SonicSkin on robots made of
various materials by implementing the system on 15
separate items with different acoustic properties.

II. RELATED WORK AND BACKGROUND

A. Touch Localization and Force Estimation

As briefly discussed in Section I, in the past years, many
efforts have been made to create on-robot tactile skins
using exteroceptive or proprioceptive sensors. Representative
work on tactile skin using exteroceptive sensors includes e-
skin [1], artificial sensor skin network [2], flexible tactile
sensing array [3], soft magnetic tactile skin [4], and tri-
boelectric nanogenerators skin [5]. These methods usually
provide an accurate tactile reading. However, because the
sensor elements have to be deployed at every possible touch
location, they introduce extra overhead in hardware and
software management, and can be costly. On the other hand,
tactile sensing using proprioceptive sensors tries to address
these inconveniences by intelligently leverage the readings
from motor torque, position, velocity and momentum read-
ings. However, representative work in this category [7]–[9]
heavily focuses on simulation or requires a special hardware
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Fig. 2. The amplitude envelope and phase of the recorded signal
from the first proof-of-concept experiment, showing responses to
contact at different locations with varying force. (a) The finger
touches at location A on the robot. (b) The finger touches at location
B that is 2 cm away from location A.

platform (specific proprioceptive sensors). The noisy nature
of proprioceptive reading limits the real-world feasibility for
these methods.

SonicSkin differs from above methods by transforming
the target robot linkage into a versatile sensor. The most
related works are Panotti [11] and ForcePhone [12]. Panotti
leverages multiple microphones deployed on the robot to
localize collisions by passively listening to the sound of the
contact. But Panotti can not localize soft contact or estimate
the force of the contact. ForcePhone transmits ultrasound
to probe the contact force applied on cellphones. However,
ForcePhone does not use sound for localization and there is
no motor noise on cellphones.

B. Background on ASW

We use the tiny “leaks” acoustic energy generated by
ASW for collision avoidance (detecting obstacles before the
contact) in our previous work [10]. However, the major
acoustic energy still resides within the surface. The acoustic
impedance changes are significantly stronger when an obsta-
cle contacts the robot. Different materials are characterized
by different loss factors and sound velocities; the adaptive
nature of the ASW allows us to get useful results with a
wide range of materials. The acoustic impedance between the
transmitter and receiver changes significantly when an obsta-
cle contacts the robot, and it shows different characteristics
when the obstacles with different acoustic properties contact
the robot surface at different locations and/or with different
force. As a result, anything, regardless of hardness and size,
that contacts the robot surface will change the modes and
resonances of the entire acoustic system. Using this principle,
we transform the entire robot surface into a tactile skin that
can accurately localize human touch and estimate the touch
pressure. In this paper, we present protocols and algorithms
that enable this full surface tactile skin, demonstrate how we
address a series of unique challenges when we implement
this design on real-world manipulators, and describe an end-
to-end system SonicSkin that runs in real-time.

III. SYSTEM DESIGN

SonicSkin employs the ASW generated by a piezoelectric
element deployed on the robot to both localize human contact
and estimate touch pressure. To provide insight on how
SonicSkin works and we look at the behavior of a single tone



(a) Chirp in frequency domain. (b) Spectrogram of chirps.

Fig. 3. We customize a CSS ASW waveform that sweeps from
20 kHz to 80 kHz. (a) The frequency domain of our designed
chirp shows the signal bandwidth and constant amplitude. (b) The
spectrogram calculated by Short-time Fourier transform shows 5
consecutive chirps. The period T of our designed chirp is 106.7 ms,
which determines the lower bound of the system response time.

19 kHz ASW signal launched on a Jaco manipulator [13].
Figure 2 shows the amplitude and phase of the received
ASW signal when a human finger touches the robot at
two different locations (2 cm apart) with varying force. As
shown in the figure, the amplitude envelope and phase of
the received ASW signal respond differently to the touches
at different locations. It indicates ASW could differentiate
touches at two very close locations. However, the ASW
signal is also sensitive to the touch pressure, which confuses
the localization if we directly use the envelope or phase as
a fingerprint to do localization.

A. ASW Waveform Design

Challenge 1: localize touches with varying contact force.
The key to reliably localize the touch is to find a combi-

nation of physical parameters that is independent of contact
force at a given location. The more physical parameters
we measure, the better chance we can find this parameter
combination. This intuition motivates us to revisit the design
of ASW waveform itself. In SonicSkin, we customize a signal
that changes its frequency linearly between two frequencies
f1 and f2, namely Chirp Spread Spectrum (CSS) [14]. A
linear acoustic chirp is defined as:

s(t) = sin(at2 +Ω1t+ ϕ) (1)

Where a is the slope of the frequency change in spectrum,
ϕ is the initial phase of the chirp, t is the time vector,
0 < t < T , T is the period of the chirp, 2πf1 = Ω1,
2πf2 = Ω2, and Ω1 + aT = Ω2. Figure 3 shows our
designed chirp waveform. SonicSkin sends consecutive short
chirps with period T = 106.7 ms. The localization and
force estimation are implemented within one chirp. which
determines the lower bound of the system response time.

The received chirp can be written as r(t) = h(t) ∗ s(t) +
n(t), where ∗ is convolution operator, n is the noise, and h(t)
is the wireless channel between the transmitter and receiver
piezoelectric elements on the robot. Note the channel h(t) is
frequency selective and the frequency domain of the received
signal can be written as R(f) = H(f)S(f)+N(f). When an
external contact is made with the robot, the channel response
changes accordingly [15]. This process can be written as:

R̄(f) = [H(f) + ∆H(f)]S(f) +N(f) (2)

Where ∆H(f) is the channel alteration introduced by the ex-
ternal contact. Figure 4(a) shows example channel responses
when there is no touch and when there are touches at two
close locations (2 cm apart). It shows that the channels
are mutually different across the frequency band for these
three cases. Note for the same location, the ∆H(f) is also
correlated with the contact force. However, as we purposely
introduce a wide range of frequencies in ASW signaling,
it is now much more likely to find an unique combination
of frequency dependent channel variations ∆H(f̄) that can
reliably recognize the contact location under varying force.
On the other hand, the frequency domain response is unique
to the touch at each location. This is because of the inhomo-
geneity of the interference pattern of the waves refelecting
off the boundaries of the robot skin. The pattern changes
in a unique way when an objects touches the robot. The
wavelength of the sound is a few centimeters which means
there is a pattern of this size scale over the entire surface that
can be learned by a classfier. We empirically validated this in
our large scale field study with 57019 real-world evaluation
datapoints.

In SonicSkin design, the localization framework works
in two phases. In the first phase, the system collects the
ASW signal when the user touch numerous locations only
one time with varying force. The system calculates ∆H(f)
for each touch and perform a one-shot training using a
Support Vector Machine (SVM) with a Radial Basis Function
(RBF) Kernel. The trained SVM model is essentially the lin-
ear combination of frequency dependent channel variations
∆H(f̄). We transform the localization into a classification
problem. In the second phase, the system adopts the pre-
trained SVM model to localize the user touches. To validate
the effectiveness of this design, we performed an experiment
with 13 touch locations on a stationary Jaco manipulator. In
this experiment, adjacent predefined locations are 2 cm apart,
and the robot arm is encircled by these 13 locations. During
testing, we collected 46 chirps while varying forces were
applied at each predefined touch location. The experiment
results are shown in Figure 4(b) using a confusion matrix.
SonicSkin accurately localizes all touch locations on the robot
arm. In our evaluation section, we demonstrate that SonicSkin
can differentiate touch locations within one centimeter
accuracy with even more predefined touch locations.

B. Optimal Spectrum Prorating Algorithm

Challenge 2: localize touches when the robot is moving.
Figure 5 shows an example received chirp signal when

the robot is moving. The robot mechanical noise and motor
Pulse Width Modulation (PWM) noise significantly distort
the feature ∆H(f) that we used for localization. SonicSkin is
likely to fail the touch localization if we use ∆H(f) directly.

We created an Optimal Spectrum Prorating Algorithm
(OSPA) to address this daunting task. The first step of OSPA
is to send the spectrogram of the received signal R(t, f) to
a matched filter that removes the lower register (less than
20 kHz) and three PWM harmonic noise bands (30 kHz,
60 kHz, and 90 kHz). We can write the spectrogram of the



(a) Chirp channel responses.
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Fig. 4. We employ the chirp channel response differences ∆H(f)
caused by touches to localize the contact. (a) The chirp channel
responds differently when there is no touch, touch at location A,
and touch at location B (2 cm away from location A). (b) SonicSkin
can accurately localize every touch in all locations that surround the
robot arm in a proof-of-concept experiment.

(a) Spectrogram for mobile arms.
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Fig. 5. The Spectrogram R(t, f) and frequency domain R(f)
of received ASW chirp when the robot is moving. The major
mechanical noise resides in the lower frequency while there are
three distinct noise peaks from the motor PWM at 30 kHz, 60
kHz, and 90 kHz.

filtered received ASW chirp as SR(t, f), where t is the time
index and f is the frequency bin index in spectrogram.

The second step in OSPA is to find the frequencies that
are more sensitive to touches from the remaining frequency
bins. Specifically, during the one-shot training, we collect the
SR(t, f) when we touch all predefined touch locations. We
next calculate a touch variance vector:

TV (f) =

n−1∑
t=0

(SR(t, f)−

n−1∑
t=0

SR(t,f)

n )2

n
(3)

Where n is the length of the signal. TV (f) is the energy
variance of each remaining frequency bin caused by touching
all predefined locations on the robot. A higher TV (f) value
means the frequency f is more sensitive to the touch.

The third step in OSPA is to find the frequencies that are
less sensitive to the robot movement. Similarly, we collect
another SR⋆(t, f) without touching the robot when the robot
is moving. The moving variance vector MV (f) can be
calculated similarly as Equation 3. A smaller MV (f) value
means the frequency f is less sensitive to the robot moving.

The last step of OSPA employs TV (f) and MV (f) work
in an adversarial manner. We define the variance contesting
vector V C(f) as follow:

V C(f) =
MV (f)

TV (f)
(4)

A smaller V C(f) value means the frequency f works as a
better option for the localization feature because it translates
to a smaller MV (f) and/or larger TV (f) value. From the

(a) Frequency selection in OSPA.
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Fig. 6. OSPA selects frequencies that are sensitive to the touch
but insensitive to the robot movement. (a) The selected frequencies
from OSPA are mostly from 40 kHz to 70 kHz. (b) An example
experimental result. The top and bottom confusion matrix shows
the localization performance without and with OSPA, respectively.
OSPA greatly improves the localization accuracy for mobile robot.

physics point of view, a smaller V C(f) translates to the
frequency f is sensitive to the finger touch (a larger TV (f))
but insensitive to robot motion (a smaller MV (f)). OSPA
gets the final selected optimal frequency bins by sorting
and thresholding the number of selected frequencies. An
implementation of OSPA is illustrated in Algorithm 1.

Algorithm 1 Optimal Spectrum Prorating Algorithm
1: function OSPA(R(t, f), R⋆(t, f))
2: Fselected = NULL
3: SR(t, f) and SR⋆(t, f) ← Matched Filtering
R(t, f) and R⋆(t, f)

4: TV (f) ← Variance SR(t, f)
5: MV (f) ← Variance SR⋆(t, f)

6: V C(f) = MV (f)
TV (f)

7: L(f) ← Ascending Sort V C(f)
8: for i ← 1 to γ do
9: FSelected(i) = L(i)

10: end for
11: return FSelected

12: end function

Where R(t, f) and R⋆(t, f) are the spectrogram of re-
ceived signals for touching the robot and for not touching the
robot during the one-shot training. γ is a preset threshold. It’s
an integer number less than the total number of frequency
bins when we calculate the spectrogram. We evaluate this
parameter setting in Section V-A. FSelected includes the
finally selected frequencies from OSPA.

Figure 6(a) visualizes the frequency domain of the re-
ceived ASW chirp with selected frequencies from OSPA.
Surprisingly, the selected frequencies are not from 20 kHz
to 30 kHz where the coupled piezoelectric transceiver has
the highest efficiency, but the selected frequencies mostly
range from 40 kHz to 70 kHz. This result indeed shows the
elegance of OSPA design. The physical intuition behind is
that OSPA takes many design considerations into account,
such as sensor efficiency, wavelength, localization resolu-
tion, motor noise profile, channel inhomogeneity, etc. The
algorithm balances them internally and selects the optimal
frequencies for moving robots.
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(a) Heat images of the Jaco arm. (b) Frequency response vs time.

Fig. 7. The temperature of the robot shifts gradually after powering
on. The features from the frequency domain change accordingly,
which makes the localization framework fail over time.

We did an example experiment with 31 predefined touch
locations on a mobile robot to show the effectiveness of
OSPA. Adjacent touch locations this time were 1.2 cm
apart, which is similar to the spacing of human fingers,
hence one can slide on the robot surface and localize the
touch continuously if the classification is 100% correct.
The robot is programmed to reach random end effector
locations during the whole experiment. Figure 6(b) shows
the localization accuracy increases from 54.3% to 96.7%
by applying OSPA for the collected data. We will present a
thorough evaluation of the OSPA performance in Section V-
B. Note the OSPA steps are the same for robots made of
different materials. Additionally, OSPA selects a collection
of optimal frequencies, in the future designs, the system can
transmit only those frequencies instead of the entire chirp to
provide faster contact detection response time.

C. Online Feature Updating

Challenge 3: compensate the robot temperature drift.
Temperature can drastically change the acoustic properties

of a material, such as wavelength and damping [16], thus
affecting SonicSkin results. We observed the robot contin-
uously warming up several hours after powering on. The
robot surface temperature also drifts with changes in the
environment temperature. Figure 7(a) shows a series of heat
images after powering on the Jaco arm (collected by a HTI
HT19 Thermal Imager [17]). As can be seen, the temperature
increases 5.4°C after 5 hours. Correspondingly, the frequency
domain R(f) of the received chirp also changes as the tem-
perature drifts. This temperature drift causes the SonicSkin
localization to fail after hours of running.

We overcame this challenge by introducing an online fea-
ture updating mechanism. After training, SonicSkin localizes
touch by sending the R(t, FSelected) selected by OSPA to
the trained classifier. The classifier yields a score vector S
during each detection (i.e. every chirp). S is a N by 1 vector
where N is the number of predefined touch locations. The
final touch location is determined by finding the highest
score from S. In order to let the classifier to adapt the
temperature drift, SonicSkin collects 3 seconds of chirp data
for calibration without touching the robot every time the
system bootstraps. Then we calculate the average prediction
score for each predefined touch location during these 3
seconds, Sc. After this short calibration process, SonicSkin
predicts the touch location by using a new feature SFinal,

(a) 19 kHz ASW vs. pressure. (b) 24 kHz ASW vs. pressure.

Fig. 8. The ASW signal responds to the touch force differently
for different frequencies. The 24 kHz ASW signal in this example
projects the pressure better than the 19 kHz ASW signal.

SFinal = S − Sc. Additionally, SonicSkin updates Sc every
20 minutes. We illustrate this mechanism in Algorithm 2.

Algorithm 2 Prediction By Online Feature Updating
1: function UPDATING(R(t, f), Rc(t, f))
2: SFinal = NULL
3: for Every α minutes do
4: for t ← 1 to β do
5: Rc(t, FSelected) ← OSPA Rc(t, f)
6: Sc(t) ← Predict Rc(t, FSelected)
7: end for
8: Sc ← Average Sc(t)
9: end for

10: R(t, FSelected) ← OSPA R(t, f)
11: S(t) ← Predict R(t, FSelected)
12: SFinal(t) = S(t)− Sc

13: return SFinal(t)
14: end function

Where Rc(t, f) is the spectrogram of the received signal
during calibration, R(t, f) is the spectrogram of received
signal during testing, α is the updating rate, and β is length of
calibration (α = 20 minutes and β = 3 seconds in SonicSkin).
Note that after the online updating algorithm, the prediction
scores are close to zero when there is no touch, but the
prediction scores are high when there is a touch. As such,
touch detection is done by thresholding the prediction score.
Upon using our online feature updating mechanism, the
classifier is able to robustly work even on data collected two
months ago. Detailed evaluations of this mechanism and the
study of parameter α setting are presented in Section V-A.

D. Touch Pressure Estimation

Challenge 4: how to estimate the touch pressure.
As indicated in Figure 2, the amplitude of received ASW

signal responds sensitively to the touch pressure. We next
measure and demonstrate the touch pressure using a Single-
tact miniature force sensor [18] as the ground truth, G(t).
Figure 8 shows the envelope of the received ASW signal at
19 kHz and 24 kHz when applying a varying touch force.
As can be seen, the 19 kHz signal is not ideal for the touch
pressure sensing, and 24 kHz is better but not optimal for
this purpose either. To better estimate the touch pressure,
SonicSkin again takes advantage of the wide-band nature of



(a) Force prediction using E(t). (b) Force prediction using EO(t).

Fig. 9. SonicSkin uses frequency dependent features from the wide-
band chirp signal to do force prediction. (a) The force estimation
performance by using the total energy across all frequencies from
the chirp. (b) The force estimation performance by using the total
energy from the selected frequencies from the chirp.

the ASW waveform design. We detail the pressure estimation
framework next.

Instead of using the energy from a single frequency, we
investigate the relationship between the touch pressure and
the total energy across the entire chirp frequency band,

E(t) =
f2∑

f=f1

R(t, f), where f1 and f2 are the lower and

upper frequency bond of the designed chirp. We define the
pressure estimator P (t) by the first order Fourier model:

P (t) = a cos(ωE(t)) + b sin(ωE(t)) + c (5)

The parameter a, ω, b, and c are calculated by

argmin
a,b,ω,c

n−1∑
t=0

(P (t)−G(t))2. Figure 9(a) shows a snapshot of

the predicted pressure and ground truth pressure using this
model. We can see an improvement over using the single
frequency energy. However, the prediction is still not ideal
and the curve fitting R2 score is 0.461. A detailed evaluation
for the curve fitting model is presented in Section V-A.

The OSPA presented in Section III-B selects an optimal
collection of frequencies that are sensitive to the touch but
insensitive to the robot movement. As such, we use the total
energy across the selected frequencies as the force prediction
feature, EO(t) =

∑
f⊆FSelected

R(t, f). Then we calculate the

optimal set of parameters in Equation 5 with EO(t). For the
same experiment shows in Figure 9(a), the R2 score increases
to 0.92 during curve fitting by using EO(t). Figure 9(b)
shows the prediction result. As expected, it is apparent that
the force estimation accuracy is greatly improved. Finally, we
noticed that the optimal parameter set is different for different
touch locations. As a result, SonicSkin calibrates each touch
location separately during the one shot-training. The system
uses the complete parameter set S = [A,B,Ω, C] for the
touch estimation in the prediction phase, where S ∈ RN×4,
N is the number of predefined touch locations.

IV. PUTTING TOGETHER A SonicSkin SYSTEM

The SonicSkin system is lightweight and can be deployed
on the robot with minimum modifications. We deploy two

1R2 a statistical measure that represents the proportion of the variance
for a dependent variable that’s explained by an independent variable or
variables in a regression model [19].

CPT-2065-L100 piezo elements [20] 20 cm apart on a
Kinova Jaco Gen 2 7-DoF manipulator. Both piezo elements
are attached to the surface of the robot with thermoplastic
adhesive (e.g., with hot glue) and covered by a sound dead-
ening material. We use a RME Fireface UFX+ USB Audio
Interface [21] as the analog-digital/digital-analog converter
(AD/DA). The sampling rate Fs for the AD/DA is 192 kHz
and the bit depth is 24 bit. Signal processing is done on an
Intel NUC7i7BNH computer [22]. The ground truth for the
contact pressure is collected by a SingleTact miniature force
sensor [18]. We deploy training contact locations that fully
surround one linkage of the robot arm. Note only one pair of
piezoelectric elements is required at each linkage for multi-
body manipulators because the robot joint decouples the
acoustic signal between two adjacent robot linkages. We can
adopt time duplex or frequency duplex to avoid interference
among sensors.

V. EVALUATION

We present the evaluation results in this section. We first
describe a set of micro-benchmark experiments to study the
parameter settings in SonicSkin, followed by an extensive
field study to demonstrate the localization accuracy and force
estimation accuracy of SonicSkin under various conditions.
In total, 57019 chirp datapoints were collected for evaluation
with 12 human subjects.

A. Micro-benchmark

We performed a collection of micro-benchmark experi-
ments to investigate the optimal parameter settings in Sonic-
Skin system design. All experiments were conducted on the
Jaco manipulator. As shown in Figure 10, we deployed 31
target touch locations on the robot. In order to demonstrate
that SonicSkin can accurately differentiate two very close
touch locations, the predefined touch locations were densely
deployed: the distance between the center of two adjacent
touch locations were 1.2 cm. Note in this section, we
use the classification accuracy to show the performance of
localization under various system parameters. We use the R2

to show the performance of the curve fitting for the pressure
estimation under various models.

1) The numbers of frequencies selected in OSPA: We first
study the classification accuracy for localizing the touch on
a continuously moving robot when we vary the number of
selected frequencies γ in Algorithm 1. In the SonicSkin im-
plementation, we have 20480 FFT points when we calculate
the spectrum R(f) for the received chirp. We have a max
number of 5013 frequency bins after the first step of OSPA.
Using the same data from one test experiment, we investigate
the classification accuracy for the 31 predefined touch loca-
tions every 100 frequency bins. Figure 11 shows the results.
We can see that the trend of classification accuracy drops
when we choose more frequency bins. Note for each γ, the
classification performance also varies with the optimization
process during training the SVM model. Hence we choose
three γ values and run the SVM model training 10 times each
to demonstrate the variance of the classification accuracy. We
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Fig. 11. Classification accuracy
vs. number of frequency bins γ.

Fig. 12. Classification accuracy
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Fig. 13. Curve fitting perfor-
mance vs. various fitting models.

can see that the classification accuracy increases to more than
95% with only a few hundred frequency bins. As a result, we
choose γ = 300 in the SonicSkin implementation. Note that
the computation load is also reduced when fewer frequency
bins are used for the classification task.

2) Online updating rate: We next investigate how often
we should update the prediction feature in Algorithm 2. For
the experiment results shown in the top of Figure 12, we
performed the one-shot training right after powering on the
robot, and we tested the accuracy of this model by touching
all 31 predefined touch locations every 5 minutes in the
next two hours. We can see that the classification accuracy
drops significantly after 30 minutes if we don’t update the
prediction feature. Therefore we set the parameter α = 20
minutes in Algorithm 2. The bottom of Figure 12 shows
the classification accuracy when we update the prediction
features. We can see that the classification accuracy stays
relatively stable after nearly two months of operation. This
result indicates that the feature updating mechanism pre-
sented in Section III-C is more than enough to support the
system in the long run.

3) Curve fitting models for pressure estimation: We study
the curve fitting model selection in the last part of micro-
benchmark experiments. We simply put a first order Fourier
model in Section III-D, however we also evaluated other
models when we design the force estimator. We collected
the data in this experiment by touching all 31 predefined lo-
cations with the SingleTact force sensor in these experiments.
Figure 13 shows the R2 values when we least square fit the
data. Note that we also vary the order for each model when
we implement the curve fitting (hence we see a variation in
the R2 for each model). As a result, the first order Fourier
model is our optimal choice considering both fitting accuracy
and computation overhead. Please note that a simple model
such as a first order polynomial fitting (linear fitting) also
yields convincing R2 value (R2 = 0.9), which validates the
effectiveness of the frequency selection mechanism in our
force estimator design.

B. Field Study

We employed the optimal parameters selected from the
micro-benchmark experiments and conducted an extensive
field study to evaluate the real-world robustness of SonicSkin.
Again we deployed 31 dense touch locations on the Jaco arm
as described in the micro-benchmark (the distance between
the center of two adjacent touch locations are 1.2 cm). We
first studied the localization and force estimation accuracy for
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(a) Localization confusion matrix. (b) Localization error CDF.

Fig. 14. The localization (a) confusion matrix and (b) error CDF
in SonicSkin for mobile robot. We collected 16492 real-world
datapoints in this experiment.

both stationary and moving robots. Next we demonstrated
the localization accuracy for multiple persons. Finally we
investigated the feasibility of deploying SonicSkin on robots
made of other materials than the Jaco arm.

1) Localization accuracy: In this study, during a three
month period, we collected 6944 testing datapoints when
the robot was stationary, and 16492 testing datapoints when
the robot was moving. Each datapoint was collected by
recording one received chirp signal when touching one target
location with varying force. The classification accuracy for
the stationary robot was 99.4%, which indicates it is a
trivial task for SonicSkin in this scenario. For the moving
robot, Figure 14(a) shows the confusion matrix for this 31
classes. Note the mis-classifications are rare and they can be
seen when we zoom-in this chart. The overall classification
accuracy is 96.2%. To better understand the localization error
in distance, we demonstrate the (Cumulative distribution
function) CDF in Figure 14(b). it shows that 97.0% of the
touch localization have less than 3 cm of error.

2) Force estimation accuracy: In this section, we report
the RMSE, standard deviation σ, and the cross-correlation
between the predicted force and ground truth force. In total
9175 datapoints for a stationary robot and 3912 datapoints
for a moving robot were collected. Table I shows the
force estimation performances under these two scenarios. As
expected, the estimation accuracy drops when the robot is
moving. However, the predicted force is still very similar
as the ground truth (more than 95% of cross-correlation).
Note the ground truth reading might not be accurate when
the robot is moving, because the SingleTact sensor might be
affected by the robot motion.

3) Localization accuracy for multiple persons: In order to
study the robustness of SonicSkin in more realistic scenarios,
we invited 12 volunteers to touch all 31 predefined locations
at will (varying force, fingers, etc) and collected 10416



RMSE (N) σ (N) Cross-correlation
Stationary robot 0.59 0.58 99.4%

Mobile robot 1.86 1.73 96.7%

TABLE I. Performances of the force estimator in SonicSkin.
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(a) Localization confusion matrix. (b) Localization error CDF.

Fig. 15. Localization performances for multi-person experiments.

testing datapoints when the robot is stationary. Figure 15
shows the confusion matrix and localization error CDF of
this study. The overall classification accuracy is 97.2%, and
98.5% of the touch location estimations have less than 3 cm
of localization error.

4) Various robot surface materials: Last but not least,
not every robot is made of carbon fiber composite found on
the Jaco arm. To investigate the feasibility of SonicSkin for
robots made of other materials, we deployed the piezoelectric
element on various materials as shown in Figure 16(a). The
same as on-robot experiments, the piezoelectric elements are
simply attached to various target surfaces (e.g., with hot
glue). Note it’s easy to reproduce our system on a variety of
substrates and geometries. But the one-shot calibration for
OSPA, online feature updating, and classifier retraining need
to be implemented for any new surface materials.

We conducted this study in two parts. Since many robots
are made of aluminum, we first studied the SonicSkin on
a standalone aluminum plate with 36 predefined touch lo-
cations (3 cm spacing between adjacent touch locations).
We collected 5040 datapoints in this experiment. Then we
studied SonicSkin on 14 other materials shown in Fig-
ure 16(a) with two very close predefined touch locations
(1.2 cm spacing). We collected 360 datapoints for each
material. We report the classification accuracy and RMSE
for force estimation in Figure 16(b). Note the classification
accuracy is 100% for the materials other than the standalone
plate. The force estimation error is lower than 0.5 N for
all materials we tested. This study indicates it is likely to
effectively implement SonicSkin on other robots made of
different materials than the Jaco arm.

VI. CONCLUSION

In this paper, we presented SonicSkin, a low-cost on-robot
full surface tactile skin that can be deployed on commercial
off-the-shelf robots with minimum modifications. SonicSkin
realized less than 2 cm touch localization error for 96.4%
of tests, with more than 96.7% cross-correlation similarity
between the predicted touch pressure and the ground truth
touch pressure. We also validated the feasibility of imple-
menting SonicSkin on robots made of various materials.

(a) Various dummy robot materi-
als we tested.

(b) Localization and pressure esti-
mation performances.

Fig. 16. We study the feasibility of implementing SonicSkin on 15
different materials used as “dummy” robots.

We have also demonstrated that SonicSkin works with
contact by objects other than human fingers. In the future
we will validate its accuracy on a wide range of living and
non-living contact objects. We also plan to further investigate
the possibility and challenges to deploy SonicSkin on mobile
robots (e.g. vacuum cleaners).
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