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Abstract—Realizing full coverage, low-maintenance, and low-
cost tactile skin is a de facto design dream since the invention of
robots. It ensures safety and enables collaborative work protocols
for human robot interactions (HRI). The on-robot tactile capability
is realized by deploying an array of external sensors or inferring
from proprioceptive information that comes with the robot, such as
motor torque. However, these methods may be cumbersome, intro-
duce extra management cost, expensive, lack real-world robustness,
or require special robot designs. In this letter, we present SonicSkin,
a low-cost (< $2) and easy to deploy system that localizes the
on-robot human touch and estimates the touch pressure without
actually attaching sensors at potential touch locations. The system
requires only a single pair of piezoelectric transducers (i.e. one
transmitter and one receiver) attached on the target robot and turns
the robot itself into a versatile sensor. We present a set of novel
algorithms to progressively address the unique challenges posed
by our system design. We put together an end-to-end SonicSkin
system on a Jaco robot arm that runs in real-time, and conducted
an extensive real-world study including 57019 actual evaluation
datapoints under various challenging conditions from 12 human
subjects. SonicSkin achieves less than 2 cm localization error for
96.4% of touches, with more than 96.7% cross-correlation simi-
larity between the predicted touch pressure and the ground truth
touch pressure.

Index Terms—Force and tactile sensing, physical human-robot
interaction.

I. INTRODUCTION

HUMANS can explore the unknown physical world by feel,
weigh and grasp when identifying the location of the con-

tact. Also, interpersonal touch is a fundamental but undervalued
aspect of human nature. Similarly, tactile sensing plays a key
role in human robot interactions (HRI), these include safe robot
operation around humans, providing emotional support in HRI,
and human guidance of robot behaviors. Yet, a low-cost full
surface tactile skin is still unavailable despite numerous efforts.

Existing approaches for realizing tactile skins can be divided
into two groups depending on the sensing method. The first
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group relies on exteroceptive sensors such as capacitive, mag-
netic and IR based sensors [1]–[6]. These methods directly attach
tens to thousands of sensor elements to the robot to create a
tactile skin that covers an adequate area. However, they can
be bulky, difficult to deploy, and may introduce extra overhead
for robot operation. Furthermore, they can be expensive. The
second group of methods employ proprioception, e.g. motor
torque, position, velocity and momentum readings coupled with
inverse kinematics and dynamics, to create an on-robot tactile
skin [7]–[9]. The goal is to infer the contact location and contact
force by learning or building models that use measured values
internal to the system. However, in practice, it is challenging
to obtain dynamic parameters due to noisy and time varying
properties of motors, and not every robot is equipped with
dedicated proprioceptive sensors. As a result, it is difficult to
implement robust real-world systems based on this group of
methods.

In this letter, we present SonicSkin, a virtual tactile skin cover-
ing the robot surface that can localize the touch and estimate the
touch pressure without deploying sensors at the touch location.
The system has three desirable properties: 1) It is low-cost
(< $2). 2) It can cover the entire target robot linkage without
any dead spots. And 3) it can be deployed on an off-the-shelf
robotic manipulator or mobile robot body with minimal mod-
ifications. To do so, SonicSkin leverages the Acoustic Surface
Wave (ASW) introduced in our previous work [10] to create
a sensing area within the entire target robot linkage. A single
pair of piezoelectric elements is attached to the robot surface
for launching and receiving the ASW signal. The core physical
intuition is that ASW transforms the entire robot surface into an
acoustical sensor, and an external contact at different locations
with varying force will introduce different changes in damping,
mode, and acoustic impedance for the sensing system. This
change can be used to accurately localize the touch and estimate
the touch pressure even for a soft contact.

However, to realize this concept and put together a real-world
system that robustly works in a dynamic environment is a
daunting task. First, both contact location and force will alter
the ASW signal. It’s challenging to localize the finger touch to
centimeter accuracy with uncertain contact force. We address
this challenge by signaling a unique wide-band ASW carrier
wave. Second, a moving robot introduces significant internal and
external acoustical noise. The noise is a challenge for SonicSkin
because of the acoustical nature of our sensing principle. To
overcome the influence of noise, we created an optimal spectrum
prorating algorithm (OSPA) to select the frequencies that are
sensitive to external touch but insensitive to robot noise. Third,
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Fig. 1. SonicSkin system configuration and overview.

changes in temperature can modify acoustic properties of the
robot. We address this issue by introducing an online updating
mechanism that enables the system to work robustly during
a three months of test time using an initial one-shot training
data. Fourth, determining the contact pressure given the above
challenges is also a hard problem. SonicSkin leverages the wide-
band nature of our customized ASW waveform to overcome this
challenge.

As shown in Fig. 1, we built a real-time system with a pair of
piezoelectric elements attached to an off-the-shelf commercial
robot arm, and demonstrated its capability to accurately local-
ize human touch and predict the touch pressure under several
difficult but realistic settings. This letter contributes as follows:
� SonicSkin is the first real-world system that enables full

surface tactile sensing with a single pair of low-cost (< $2)
piezoelectric sensors.

� We identified realistic real-world challenges and cus-
tomized several signal processing mechanisms to effec-
tively address these issues. The system requires only one-
shot training, runs in real-time, and corrects for temperature
changes.

� We implemented a SonicSkin prototype on a 7 DOF ma-
nipulator, and conducted comprehensive evaluations with
57019 actual received datapoints from 12 human subjects.
Our multi-scenario and multi-person real world experi-
ments show SonicSkin localizes 96.4% of the touches with
less than 2 cm error even when the robot is moving, and
attains root mean square error (RMSE) of 0.59 N when
the robot is stationary and 1.86 N for the contact pressure
estimation when the robot is moving. Additionally, we also
validated the feasibility of deploying SonicSkin on robots
made of various materials by implementing the system on
15 separate items with different acoustic properties.

II. RELATED WORK AND BACKGROUND

A. Touch Localization and Force Estimation

As briefly discussed in Section I, in the past years, many
efforts have been made to create on-robot tactile skins using
exteroceptive or proprioceptive sensors. Representative work on
tactile skin using exteroceptive sensors includes e-skin [1], arti-
ficial sensor skin network [2], flexible tactile sensing array [3],
soft magnetic tactile skin [4], and triboelectric nanogenerators

skin [5]. These methods usually provide an accurate tactile read-
ing. However, because the sensor elements have to be deployed
at every possible touch location, they introduce extra overhead
in hardware and software management, and can be costly. On
the other hand, tactile sensing using proprioceptive sensors tries
to address these inconveniences by intelligently leverage the
readings from motor torque, position, velocity and momentum
readings. However, representative work in this category [7]–[9]
heavily focuses on simulation or requires a special hardware
platform (specific proprioceptive sensors). The noisy nature of
proprioceptive reading limits the real-world feasibility for these
methods.

SonicSkin differs from above methods by transforming the
target robot linkage into a versatile sensor. The most related
works are Panotti [11] and ForcePhone [12]. Panotti leverages
multiple microphones deployed on the robot to localize colli-
sions by passively listening to the sound of the contact. But
Panotti can not localize soft contact or estimate the force of the
contact. ForcePhone transmits ultrasound to probe the contact
force applied on cellphones. However, ForcePhone does not use
sound for localization and there is no motor noise on cellphones.

B. Background on ASW

We use the tiny “leaks” acoustic energy generated by ASW
for collision avoidance (detecting obstacles before the contact)
in our previous work [10]. However, the major acoustic energy
still resides within the surface. The acoustic impedance changes
are significantly stronger when an obstacle contacts the robot.
Different materials are characterized by different loss factors
and sound velocities; the adaptive nature of the ASW allows us
to get useful results with a wide range of materials. The acoustic
impedance between the transmitter and receiver changes signifi-
cantly when an obstacle contacts the robot, and it shows different
characteristics when the obstacles with different acoustic prop-
erties contact the robot surface at different locations and/or with
different force. As a result, anything, regardless of hardness and
size, that contacts the robot surface will change the modes and
resonances of the entire acoustic system. Using this principle,
we transform the entire robot surface into a tactile skin that can
accurately localize human touch and estimate the touch pressure.
In this letter, we present protocols and algorithms that enable this
full surface tactile skin, demonstrate how we address a series of
unique challenges when we implement this design on real-world
manipulators, and describe an end-to-end system SonicSkin that
runs in real-time.

III. SYSTEM DESIGN

SonicSkin employs the ASW generated by a piezoelectric el-
ement deployed on the robot to both localize human contact and
estimate touch pressure. To provide insight on how SonicSkin
works and we look at the behavior of a single tone 19 kHz
ASW signal launched on a Jaco manipulator [13]. Fig. 2 shows
the amplitude and phase of the received ASW signal when a
human finger touches the robot at two different locations (2 cm
apart) with varying force. As shown in the figure, the amplitude
envelope and phase of the received ASW signal respond dif-
ferently to the touches at different locations. It indicates ASW
could differentiate touches at two very close locations. However,
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Fig. 2. The amplitude envelope and phase of the recorded signal from the first
proof-of-concept experiment, showing responses to contact at different locations
with varying force. (a) The finger touches at location A on the robot. (b) The
finger touches at location B that is 2 cm away from location A.

Fig. 3. We customize a CSS ASW waveform that sweeps from 20 kHz to
80 kHz. (a) The frequency domain of our designed chirp shows the signal band-
width and constant amplitude. (b) The spectrogram calculated by Short-time
Fourier transform shows 5 consecutive chirps. The period T of our designed
chirp is 106.7 ms, which determines the lower bound of the system response
time.

the ASW signal is also sensitive to the touch pressure, which
confuses the localization if we directly use the envelope or phase
as a fingerprint to do localization.

A. ASW Waveform Design

Challenge 1: localize touches with varying contact force:The
key to reliably localize the touch is to find a combination of
physical parameters that is independent of contact force at a
given location. The more physical parameters we measure, the
better chance we can find this parameter combination. This
intuition motivates us to revisit the design of ASW waveform
itself. In SonicSkin, we customize a signal that changes its
frequency linearly between two frequencies f1 and f2, namely
Chirp Spread Spectrum (CSS) [14]. A linear acoustic chirp is
defined as:

s(t) = sin(at2 +Ω1t+ φ) (1)

where a is the slope of the frequency change in spectrum, φ is
the initial phase of the chirp, t is the time vector, 0 < t < T ,
T is the period of the chirp, 2πf1 = Ω1, 2πf2 = Ω2, and Ω1 +
aT = Ω2. Fig. 3 shows our designed chirp waveform. SonicSkin
sends consecutive short chirps with period T = 106.7 ms. The
localization and force estimation are implemented within one
chirp. which determines the lower bound of the system response
time.

The received chirp can be written as r(t) = h(t) ∗ s(t) +
n(t), where ∗ is convolution operator, n is the noise, and h(t)
is the wireless channel between the transmitter and receiver
piezoelectric elements on the robot. Note the channel h(t) is
frequency selective and the frequency domain of the received

Fig. 4. We employ the chirp channel response differences ΔH(f) caused by
touches to localize the contact. (a) The chirp channel responds differently when
there is no touch, touch at location A, and touch at location B (2 cm away from
location A). (b) SonicSkin can accurately localize every touch in all locations
that surround the robot arm in a proof-of-concept experiment.

signal can be written as R(f) = H(f)S(f) +N(f). When an
external contact is made with the robot, the channel response
changes accordingly [15]. This process can be written as:

R̄(f) = [H(f) + ΔH(f)]S(f) +N(f) (2)

where ΔH(f) is the channel alteration introduced by the exter-
nal contact. Fig. 4(a) shows example channel responses when
there is no touch and when there are touches at two close
locations (2 cm apart). It shows that the channels are mutually
different across the frequency band for these three cases. Note
for the same location, the ΔH(f) is also correlated with the
contact force. However, as we purposely introduce a wide range
of frequencies in ASW signaling, it is now much more likely
to find an unique combination of frequency dependent chan-
nel variations ΔH(f̄) that can reliably recognize the contact
location under varying force. On the other hand, the frequency
domain response is unique to the touch at each location. This
is because of the inhomogeneity of the interference pattern of
the waves refelecting off the boundaries of the robot skin. The
pattern changes in a unique way when an objects touches the
robot. The wavelength of the sound is a few centimeters which
means there is a pattern of this size scale over the entire surface
that can be learned by a classfier. We empirically validated this
in our large scale field study with 57019 real-world evaluation
datapoints.

In SonicSkin design, the localization framework works in
two phases. In the first phase, the system collects the ASW
signal when the user touch numerous locations only one time
with varying force. The system calculates ΔH(f) for each
touch and perform a one-shot training using a Support Vector
Machine (SVM) with a Radial Basis Function (RBF) Kernel.
The trained SVM model is essentially the linear combination of
frequency dependent channel variations ΔH(f̄). We transform
the localization into a classification problem. In the second
phase, the system adopts the pre-trained SVM model to localize
the user touches. To validate the effectiveness of this design, we
performed an experiment with 13 touch locations on a stationary
Jaco manipulator. In this experiment, adjacent predefined loca-
tions are 2 cm apart, and the robot arm is encircled by these 13
locations. During testing, we collected 46 chirps while varying
forces were applied at each predefined touch location. The ex-
periment results are shown in Fig. 4(b) using a confusion matrix.
SonicSkin accurately localizes all touch locations on the robot
arm. In our evaluation section, we demonstrate that SonicSkin
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Fig. 5. The Spectrogram R(t, f) and frequency domain R(f) of received
ASW chirp when the robot is moving. The major mechanical noise resides in
the lower frequency while there are three distinct noise peaks from the motor
PWM at 30 kHz, 60 kHz, and 90 kHz.

can differentiate touch locations within one centimeter accuracy
with even more predefined touch locations.

B. Optimal Spectrum Prorating Algorithm

Challenge 2: localize touches when the robot is moving.Fig. 5
shows an example received chirp signal when the robot is mov-
ing. The robot mechanical noise and motor Pulse Width Modu-
lation (PWM) noise significantly distort the feature ΔH(f) that
we used for localization. SonicSkin is likely to fail the touch
localization if we use ΔH(f) directly.

We created an Optimal Spectrum Prorating Algorithm (OSPA)
to address this daunting task. The first step of OSPA is to send the
spectrogram of the received signal R(t, f) to a matched filter
that removes the lower register (less than 20 kHz) and three
PWM harmonic noise bands (30 kHz, 60 kHz, and 90 kHz). We
can write the spectrogram of the filtered received ASW chirp as
SR(t, f), where t is the time index and f is the frequency bin
index in spectrogram.

The second step in OSPA is to find the frequencies that
are more sensitive to touches from the remaining frequency
bins. Specifically, during the one-shot training, we collect the
SR(t, f)when we touch all predefined touch locations. We next
calculate a touch variance vector:

TV (f) =

∑n−1
t=0 (SR(t, f)−

∑n−1
t=0 SR(t,f)

n )2

n
(3)

where n is the length of the signal. TV (f) is the energy variance
of each remaining frequency bin caused by touching all prede-
fined locations on the robot. A higher TV (f) value means the
frequency f is more sensitive to the touch.

The third step in OSPA is to find the frequencies that are less
sensitive to the robot movement. Similarly, we collect another
SR�(t, f) without touching the robot when the robot is moving.
The moving variance vector MV (f) can be calculated similarly
as Equation 3. A smaller MV (f) value means the frequency f
is less sensitive to the robot moving.

The last step of OSPA employs TV (f) and MV (f) work in
an adversarial manner. We define the variance contesting vector
V C(f) as follow:

V C(f) =
MV (f)

TV (f)
(4)

A smaller V C(f) value means the frequency f works as a
better option for the localization feature because it translates to

Algorithm 1: Optimal Spectrum Prorating Algorithm.

1: function OSPAR(t, f),R�(t, f)
2: Fselected = NULL
3: SR(t, f) and SR�(t, f)←Matched Filtering

R(t, f) andR�(t, f)
4: TV (f)← Variance SR(t, f)
5: MV (f)← Variance SR�(t, f)

6: V C(f) = MV (f)
TV (f)

7: L(f)← Ascending Sort V C(f)
8: For i ← 1 to γ do
9: FSelected(i) = L(i)

10: end for
11: return FSelected

12: end function

Fig. 6. OSPA selects frequencies that are sensitive to the touch but insensitive
to the robot movement. (a) The selected frequencies from OSPA are mostly from
40 kHz to 70 kHz. (b) An example experimental result. The top and bottom
confusion matrix shows the localization performance without and with OSPA,
respectively. OSPA greatly improves the localization accuracy for mobile robot.

a smaller MV (f) and/or larger TV (f) value. From the physics
point of view, a smaller V C(f) translates to the frequency f
is sensitive to the finger touch (a larger TV (f)) but insensitive
to robot motion (a smaller MV (f)). OSPA gets the final se-
lected optimal frequency bins by sorting and thresholding the
number of selected frequencies. An implementation of OSPA is
illustrated in Algorithm 1.

WhereR(t, f) andR�(t, f) are the spectrogram of received
signals for touching the robot and for not touching the robot
during the one-shot training. γ is a preset threshold. It’s an
integer number less than the total number of frequency bins
when we calculate the spectrogram. We evaluate this parameter
setting in Section V-A. FSelected includes the finally selected
frequencies from OSPA.

Fig. 6(a) visualizes the frequency domain of the received
ASW chirp with selected frequencies from OSPA. Surprisingly,
the selected frequencies are not from 20 kHz to 30 kHz where the
coupled piezoelectric transceiver has the highest efficiency, but
the selected frequencies mostly range from 40 kHz to 70 kHz.
This result indeed shows the elegance of OSPA design. The
physical intuition behind is that OSPA takes many design con-
siderations into account, such as sensor efficiency, wavelength,
localization resolution, motor noise profile, channel inhomo-
geneity, etc. The algorithm balances them internally and selects
the optimal frequencies for moving robots.

We did an example experiment with 31 predefined touch
locations on a mobile robot to show the effectiveness of OSPA.
Adjacent touch locations this time were 1.2 cm apart, which is
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Fig. 7. The temperature of the robot shifts gradually after powering on.
The features from the frequency domain change accordingly, which makes the
localization framework fail over time.

similar to the spacing of human fingers, hence one can slide
on the robot surface and localize the touch continuously if the
classification is 100% correct. The robot is programmed to reach
random end effector locations during the whole experiment.
Fig. 6(b) shows the localization accuracy increases from 54.3%
to 96.7% by applying OSPA for the collected data. We will
present a thorough evaluation of the OSPA performance in
Section V-B. Note the OSPA steps are the same for robots made
of different materials. Additionally, OSPA selects a collection
of optimal frequencies, in the future designs, the system can
transmit only those frequencies instead of the entire chirp to
provide faster contact detection response time.

C. Online Feature Updating

Challenge 3: compensate the robot temperature
drift:Temperature can drastically change the acoustic properties
of a material, such as wavelength and damping [16], thus
affecting SonicSkin results. We observed the robot continuously
warming up several hours after powering on. The robot surface
temperature also drifts with changes in the environment
temperature. Fig. 7(a) shows a series of heat images after
powering on the Jaco arm (collected by a HTI HT19 Thermal
Imager [17]). As can be seen, the temperature increases 5.4 °C
after 5 hours. Correspondingly, the frequency domain R(f) of
the received chirp also changes as the temperature drifts. This
temperature drift causes the SonicSkin localization to fail after
hours of running.

We overcame this challenge by introducing an online feature
updating mechanism. After training, SonicSkin localizes touch
by sending the R(t, FSelected) selected by OSPA to the trained
classifier. The classifier yields a score vector S during each
detection (i.e. every chirp). S is a N by 1 vector where N is the
number of predefined touch locations. The final touch location
is determined by finding the highest score from S. In order to let
the classifier to adapt the temperature drift, SonicSkin collects 3
seconds of chirp data for calibration without touching the robot
every time the system bootstraps. Then we calculate the average
prediction score for each predefined touch location during these
3 seconds, Sc. After this short calibration process, SonicSkin
predicts the touch location by using a new featureSFinal,SFinal

=S − Sc. Additionally, SonicSkin updatesSc every 20 minutes.
We illustrate this mechanism in Algorithm 2.

Where Rc(t, f) is the spectrogram of the received signal
during calibration,R(t, f) is the spectrogram of received signal

Algorithm 2: Prediction by Online Feature Updating.

1: function UpdatingR(t, f),Rc(t, f)
2: SFinal = NULL
3: for Every α minutes do
4: for t ← 1 to β do
5: Rc(t, FSelected)← OSPARc(t, f)
6: Sc(t)← PredictRc(t, FSelected)
7: end for
8: Sc← Average Sc(t)
9: end for

10: R(t, FSelected)← OSPAR(t, f)
11: S(t)← PredictR(t, FSelected)
12: SFinal(t) = S(t)− Sc

13: return SFinal(t)
14: end function

Fig. 8. The ASW signal responds to the touch force differently for different
frequencies. The 24 kHz ASW signal in this example projects the pressure better
than the 19 kHz ASW signal.

during testing, α is the updating rate, and β is length of cali-
bration (α= 20 minutes and β = 3 seconds in SonicSkin). Note
that after the online updating algorithm, the prediction scores are
close to zero when there is no touch, but the prediction scores are
high when there is a touch. As such, touch detection is done by
thresholding the prediction score. Upon using our online feature
updating mechanism, the classifier is able to robustly work even
on data collected two months ago. Detailed evaluations of this
mechanism and the study of parameter α setting are presented
in Section V-A.

D. Touch Pressure Estimation

Challenge 4: how to estimate the touch pressure.As indicated
in Fig. 2, the amplitude of received ASW signal responds sensi-
tively to the touch pressure. We next measure and demonstrate
the touch pressure using a Singletact miniature force sensor [18]
as the ground truth, G(t). Fig. 8 shows the envelope of the
received ASW signal at 19 kHz and 24 kHz when applying a
varying touch force. As can be seen, the 19 kHz signal is not
ideal for the touch pressure sensing, and 24 kHz is better but
not optimal for this purpose either. To better estimate the touch
pressure, SonicSkin again takes advantage of the wide-band
nature of the ASW waveform design. We detail the pressure
estimation framework next.

Instead of using the energy from a single frequency, we
investigate the relationship between the touch pressure and the
total energy across the entire chirp frequency band, E(t) =
∑f2

f=f1
R(t, f), where f1 and f2 are the lower and upper
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Fig. 9. SonicSkin uses frequency dependent features from the wide-band chirp
signal to do force prediction. (a) The force estimation performance by using the
total energy across all frequencies from the chirp. (b) The force estimation per-
formance by using the total energy from the selected frequencies from the chirp.

frequency bond of the designed chirp. We define the pressure
estimator P (t) by the first order Fourier model:

P (t) = a cos(ωE(t)) + b sin(ωE(t)) + c (5)

The parameter a, ω, b, and c are calculated by
arg mina,b,ω,c

∑n−1
t=0 (P (t)−G(t))2. Fig. 9(a) shows a snapshot

of the predicted pressure and ground truth pressure using this
model. We can see an improvement over using the single
frequency energy. However, the prediction is still not ideal and
the curve fitting R2 score is 0.461. A detailed evaluation for the
curve fitting model is presented in Section V-A.

The OSPA presented in Section III-B selects an optimal
collection of frequencies that are sensitive to the touch but
insensitive to the robot movement. As such, we use the total
energy across the selected frequencies as the force prediction
feature, EO(t) =

∑
f⊆FSelected

R(t, f). Then we calculate the
optimal set of parameters in Equation 5 with EO(t). For the
same experiment shows in Fig. 9(a), the R2 score increases
to 0.92 during curve fitting by using EO(t). Fig. 9(b) shows
the prediction result. As expected, it is apparent that the force
estimation accuracy is greatly improved. Finally, we noticed
that the optimal parameter set is different for different touch
locations. As a result, SonicSkin calibrates each touch location
separately during the one shot-training. The system uses the
complete parameter set S = [A,B,Ω, C] for the touch estima-
tion in the prediction phase, where S ∈ RN×4, N is the number
of predefined touch locations.

IV. PUTTING TOGETHER A SONICSKIN SYSTEM

The SonicSkin system is lightweight and can be deployed on
the robot with minimum modifications. We deploy two CPT-
2065-L100 piezo elements [20] 20 cm apart on a Kinova Jaco
Gen 2 7-DoF manipulator. Both piezo elements are attached
to the surface of the robot with thermoplastic adhesive (e.g.,
with hot glue) and covered by a sound deadening material. We
use a RME Fireface UFX+ USB Audio Interface [21] as the
analog-digital/digital-analog converter (AD/DA). The sampling
rateFs for the AD/DA is 192 kHz and the bit depth is 24 b. Signal
processing is done on an Intel NUC7i7BNH computer [22]. The
ground truth for the contact pressure is collected by a SingleTact
miniature force sensor [18]. We deploy training contact locations
that fully surround one linkage of the robot arm. Note only one

1R2 a statistical measure that represents the proportion of the variance for a
dependent variable that’s explained by an independent variable or variables in a
regression model [19].

Fig. 10. Predefined touch area. We also touch between markers.

Fig. 11. Classification accuracy vs. number of frequency bins γ.

pair of piezoelectric elements is required at each linkage for
multi-body manipulators because the robot joint decouples the
acoustic signal between two adjacent robot linkages. We can
adopt time duplex or frequency duplex to avoid interference
among sensors.

V. EVALUATION

We present the evaluation results in this section. We first
describe a set of micro-benchmark experiments to study the
parameter settings in SonicSkin, followed by an extensive field
study to demonstrate the localization accuracy and force esti-
mation accuracy of SonicSkin under various conditions. In total,
57019 chirp datapoints were collected for evaluation with 12
human subjects.

A. Micro-Benchmark

We performed a collection of micro-benchmark experiments
to investigate the optimal parameter settings in SonicSkin system
design. All experiments were conducted on the Jaco manipula-
tor. As shown in Fig. 10, we deployed 31 target touch locations
on the robot. In order to demonstrate that SonicSkin can accu-
rately differentiate two very close touch locations, the predefined
touch locations were densely deployed: the distance between
the center of two adjacent touch locations were 1.2 cm. Note
in this section, we use the classification accuracy to show the
performance of localization under various system parameters.
We use the R2 to show the performance of the curve fitting for
the pressure estimation under various models.

1) The Numbers of Frequencies Selected in OSPA: We first
study the classification accuracy for localizing the touch on a
continuously moving robot when we vary the number of selected
frequencies γ in Algorithm 1. In the SonicSkin implementation,
we have 20480 FFT points when we calculate the spectrumR(f)
for the received chirp. We have a max number of 5013 frequency
bins after the first step of OSPA. Using the same data from one
test experiment, we investigate the classification accuracy for the
31 predefined touch locations every 100 frequency bins. Fig. 11
shows the results. We can see that the trend of classification
accuracy drops when we choose more frequency bins. Note
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Fig. 12. Classification accuracy vs. time elapsed.

Fig. 13. Curve fitting performance vs. various fitting models.

for each γ, the classification performance also varies with the
optimization process during training the SVM model. Hence we
choose three γ values and run the SVM model training 10 times
each to demonstrate the variance of the classification accuracy.
We can see that the classification accuracy increases to more
than 95% with only a few hundred frequency bins. As a result,
we choose γ = 300 in the SonicSkin implementation. Note that
the computation load is also reduced when fewer frequency bins
are used for the classification task.

2) Online Updating Rate: We next investigate how often we
should update the prediction feature in Algorithm 2. For the
experiment results shown in the top of Fig. 12, we performed
the one-shot training right after powering on the robot, and we
tested the accuracy of this model by touching all 31 predefined
touch locations every 5 minutes in the next two hours. We can
see that the classification accuracy drops significantly after 30
minutes if we don’t update the prediction feature. Therefore we
set the parameter α = 20 minutes in Algorithm 2. The bottom
of Fig. 12 shows the classification accuracy when we update the
prediction features. We can see that the classification accuracy
stays relatively stable after nearly two months of operation. This
result indicates that the feature updating mechanism presented
in Section III-C is more than enough to support the system in
the long run.

3) Curve Fitting Models for Pressure Estimation: We study
the curve fitting model selection in the last part of micro-
benchmark experiments. We simply put a first order Fourier
model in Section III-D, however we also evaluated other models
when we design the force estimator. We collected the data in
this experiment by touching all 31 predefined locations with the
SingleTact force sensor in these experiments. Fig. 13 shows the
R2 values when we least square fit the data. Note that we also
vary the order for each model when we implement the curve
fitting (hence we see a variation in the R2 for each model).
As a result, the first order Fourier model is our optimal choice
considering both fitting accuracy and computation overhead.
Please note that a simple model such as a first order poly-
nomial fitting (linear fitting) also yields convincing R2 value
(R2 = 0.9), which validates the effectiveness of the frequency
selection mechanism in our force estimator design.

Fig. 14. The localization (a) confusion matrix and (b) error CDF in SonicSkin
for mobile robot. We collected 16492 real-world datapoints in this experiment.

TABLE I
PERFORMANCES OF THE FORCE ESTIMATOR IN SONICSKIN

B. Field Study

We employed the optimal parameters selected from the micro-
benchmark experiments and conducted an extensive field study
to evaluate the real-world robustness of SonicSkin. Again we
deployed 31 dense touch locations on the Jaco arm as described
in the micro-benchmark (the distance between the center of two
adjacent touch locations are 1.2 cm). We first studied the lo-
calization and force estimation accuracy for both stationary and
moving robots. Next we demonstrated the localization accuracy
for multiple persons. Finally we investigated the feasibility of
deploying SonicSkin on robots made of other materials than the
Jaco arm.

1) Localization Accuracy: In this study, during a three month
period, we collected 6944 testing datapoints when the robot
was stationary, and 16492 testing datapoints when the robot
was moving. Each datapoint was collected by recording one
received chirp signal when touching one target location with
varying force. The classification accuracy for the stationary
robot was 99.4%, which indicates it is a trivial task for SonicSkin
in this scenario. For the moving robot, Fig. 14(a) shows the
confusion matrix for this 31 classes. Note the mis-classifications
are rare and they can be seen when we zoom-in this chart. The
overall classification accuracy is 96.2%. To better understand the
localization error in distance, we demonstrate the (Cumulative
distribution function) CDF in Fig. 14(b). it shows that 97.0% of
the touch localization have less than 3 cm of error.

2) Force Estimation Accuracy: In this section, we report the
RMSE, standard deviation σ, and the cross-correlation between
the predicted force and ground truth force. In total 9175 data-
points for a stationary robot and 3912 datapoints for a moving
robot were collected. Table I shows the force estimation perfor-
mances under these two scenarios. As expected, the estimation
accuracy drops when the robot is moving. However, the pre-
dicted force is still very similar as the ground truth (more than
95% of cross-correlation). Note the ground truth reading might
not be accurate when the robot is moving, because the SingleTact
sensor might be affected by the robot motion.

3) Localization Accuracy for Multiple Persons: In order to
study the robustness of SonicSkin in more realistic scenarios,
we invited 12 volunteers to touch all 31 predefined locations
at will (varying force, fingers, etc) and collected 10416 test-
ing datapoints when the robot is stationary. Fig. 15 shows the
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Fig. 15. Localization performances for multi-person experiments.

Fig. 16. We study the feasibility of implementing SonicSkin on 15 different
materials used as “dummy” robots.

confusion matrix and localization error CDF of this study. The
overall classification accuracy is 97.2%, and 98.5% of the touch
location estimations have less than 3 cm of localization error.

4) Various Robot Surface Materials: Last but not least, not
every robot is made of carbon fiber composite found on the Jaco
arm. To investigate the feasibility of SonicSkin for robots made
of other materials, we deployed the piezoelectric element on
various materials as shown in Fig. 16(a). The same as on-robot
experiments, the piezoelectric elements are simply attached to
various target surfaces (e.g., with hot glue). Note it’s easy to
reproduce our system on a variety of substrates and geometries.
But the one-shot calibration for OSPA, online feature updating,
and classifier retraining need to be implemented for any new
surface materials.

We conducted this study in two parts. Since many robots
are made of aluminum, we first studied the SonicSkin on a
standalone aluminum plate with 36 predefined touch locations
(3 cm spacing between adjacent touch locations). We collected
5040 datapoints in this experiment. Then we studied Sonic-
Skin on 14 other materials shown in Fig. 16(a) with two very
close predefined touch locations (1.2 cm spacing). We collected
360 datapoints for each material. We report the classification
accuracy and RMSE for force estimation in Fig. 16(b). Note
the classification accuracy is 100% for the materials other than
the standalone plate. The force estimation error is lower than
0.5 N for all materials we tested. This study indicates it is likely
to effectively implement SonicSkin on other robots made of
different materials than the Jaco arm.

VI. CONCLUSION

In this letter, we presented SonicSkin, a low-cost on-robot
full surface tactile skin that can be deployed on commercial
off-the-shelf robots with minimum modifications. SonicSkin
realized less than 2 cm touch localization error for 96.4% of tests,
with more than 96.7% cross-correlation similarity between the

predicted touch pressure and the ground truth touch pressure.
We also validated the feasibility of implementing SonicSkin on
robots made of various materials.

We have also demonstrated that SonicSkin works with contact
by objects other than human fingers. In the future we will validate
its accuracy on a wide range of living and non-living contact
objects. We also plan to further investigate the possibility and
challenges to deploy SonicSkin on mobile robots (e.g. vacuum
cleaners).
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